1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
use crate::processor::isa_mods::*;

use crate::processor::exceptions::IllegalInstructionException::UnsupportedParam;

/// Base ISA module for RV64 ISAs.
/// Implements Integer and Multiply extensions.
pub struct Rv64im {}
impl IsaMod<Rv64imConn<'_>> for Rv64im {
    type Pc = u64;

    fn will_handle(&self, opcode: Opcode, _inst: InstructionBits) -> bool {
        use crate::processor::decode::Opcode::*;
        match opcode {
            Load | Store | OpImm | Op | OpImm32 | Op32 => true,
            AddUpperImmPC | LoadUpperImm | JumpAndLink | JumpAndLinkRegister | Branch => true,

            _ => false
        }
    }

    fn execute(&mut self, opcode: Opcode, inst: InstructionBits, _inst_bits: u32, conn: Rv64imConn) -> ProcessorResult<Option<Self::Pc>> {
        let mut next_pc = None;

        use crate::processor::decode::Opcode::*;
        match (opcode, inst) {
            (Load, InstructionBits::IType{rd, funct3, rs1, imm}) => {
                let addr = conn.sreg.read(rs1)?.wrapping_add(imm.sign_extend_u64());
                let new_val = match funct3 {
                    // LB, LH, LW sign-extend if necessary
                    0b000 => (conn.memory.load_u8(addr)? as i8) as i64 as u64, // LB
                    0b001 => (conn.memory.load_u16(addr)? as i16) as i64 as u64, // LH
                    0b010 => (conn.memory.load_u32(addr)? as i32) as i64 as u64, // LW
                    0b011 => conn.memory.load_u64(addr)? as u64, // LD
                    // LBU, LHU, LWU don't sign-extend
                    0b100 => conn.memory.load_u8(addr)? as u64, // LBU
                    0b101 => conn.memory.load_u16(addr)? as u64, // LHU
                    0b110 => conn.memory.load_u32(addr)? as u64, // LWU

                    _ => bail!(UnsupportedParam(format!("Load funct3 {:03b}", funct3)))
                };
                conn.sreg.write(rd, new_val)?;
            }
            (Store, InstructionBits::SType{funct3, rs1, rs2, imm}) => {
                let addr = conn.sreg.read(rs1)?.wrapping_add(imm.sign_extend_u64());
                match funct3 {
                    0b000 => conn.memory.store_u8(addr, (conn.sreg.read(rs2)? & 0xFF) as u8)?,
                    0b001 => conn.memory.store_u16(addr, (conn.sreg.read(rs2)? & 0xFFFF) as u16)?,
                    0b010 => conn.memory.store_u32(addr, (conn.sreg.read(rs2)? & 0xFFFF_FFFF) as u32)?,
                    0b011 => conn.memory.store_u64(addr, (conn.sreg.read(rs2)? & 0xFFFF_FFFF_FFFF_FFFF) as u64)?,
                    
                    _ => bail!(UnsupportedParam(format!("Store funct3 {:03b}", funct3)))
                };
            }

            (OpImm, InstructionBits::IType{rd, funct3, rs1, imm}) => {
                let imm = imm.sign_extend_u64();
                let input = conn.sreg.read(rs1)?;
                let new_val = match (imm, funct3) {
                    (imm, 0b000) => input.wrapping_add(imm), // ADDI
                    (imm, 0b010) => if (input as i64) < (imm as i64) { 1 } else { 0 }, // SLTI
                    (imm, 0b011) => if input < imm { 1 } else { 0 }, // SLTU
                    (imm, 0b100) => input ^ imm, // XORI
                    (imm, 0b110) => input | imm, // ORI
                    (imm, 0b111) => input & imm, // ANDI

                    (shamt, 0b001) => input << shamt, // SLLI
                    (imm, 0b101) => {
                        // Check top bits of imm to see if arithmetic or logical
                        // shamt = bottom-six-bits
                        let shamt = imm & 0x3F;
                        if ((imm >> 10) & 1) == 1 {
                            // SRAI
                            // input as i64 => shift will be arithmetic
                            // cast back to u64 afterwards
                            ((input as i64) >> shamt) as u64
                        } else {
                            // SRLI
                            input >> shamt
                        }
                    }

                    _ => unreachable!("OpImm funct3 {:03b}", funct3)
                };
                conn.sreg.write(rd, new_val)?;
            }
            (OpImm32, InstructionBits::IType{rd, funct3, rs1, imm}) => {
                // Op32 = do all operations with 32-bit values, then sign-extend the 32-bit version up to 64-bit
                let input = conn.sreg.read(rs1)? as u32;
                let imm = imm.sign_extend_u32();
                let new_val = match (imm, funct3) {
                    (imm, 0b000) => input.wrapping_add(imm), // ADDIW

                    (imm, 0b001) => {
                        // SLLIW
                        // shamt = bottom-five-bits
                        if imm & 0x10 != 0 {
                            bail!(UnsupportedParam(format!("OpImm32 shamt has bit 5 set")))
                        }
                        let shamt = imm & 0x0F;
                        input << shamt
                    },
                    (imm, 0b101) => {
                        // Check top bits of imm to see if arithmetic or logical
                        // shamt = bottom-five-bits
                        if imm & 0x10 != 0 {
                            bail!(UnsupportedParam(format!("OpImm32 shamt has bit 5 set")))
                        }
                        let shamt = imm & 0x0F;
                        if ((imm >> 10) & 1) == 1 {
                            // SRAIW
                            // input as i32 => shift will be arithmetic
                            // cast back to u32 afterwards
                            ((input as i32) >> shamt) as u32
                        } else {
                            // SRLIW
                            input >> shamt
                        }
                    }

                    _ => unreachable!("OpImm funct3 {:03b}", funct3)
                };
                // Sign-extend 32-bit value to 64-bit
                conn.sreg.write(rd, new_val as i32 as i64 as u64)?;
            }

            (Op, InstructionBits::RType{rd, funct3, rs1, rs2, funct7}) => {
                const ALT: u8 = 0b0100000;
                let x = conn.sreg.read(rs1)?;
                let y = conn.sreg.read(rs2)?;
                let new_val = match (funct7, funct3) {
                    (0, 0b000) => x.wrapping_add(y), // ADD
                    
                    (ALT, 0b000) => x.wrapping_sub(y), // SUB

                    (0, 0b001) => x << y, // SLL
                    
                    (0, 0b010) => if (x as i64) < (y as i64) { 1 } else { 0 }, // SLT
                    (0, 0b011) => if x < y { 1 } else { 0 }, // SLTU

                    (0, 0b100) => x ^ y, // XOR 
                    (0, 0b101) => x >> y, // SRL
                    (ALT, 0b101) => ((x as i64) >> y) as u64, // SRA
                    (0, 0b110) => x | y, // OR
                    (0, 0b111) => x & y, // AND

                    (1, funct3) => match funct3 {
                        0b000 => x * y, // MUL
                        // MULH
                        // Widen x,y to i128, multiply, shift down so we take top 32 bits of result
                        0b001 => ((x as i64 as i128) * (y as i64 as i128) >> 32) as i64 as u64,
                        // MULHSU
                        // Widen x to i128, y to u128 *then* i128 (doesn't sign-extend), multiply + shift
                        0b010 => ((x as i64 as i128) * (y as u128 as i128) >> 32) as i64 as u64, 
                        // MULHU
                        // Widen x,y to u128, multiply+shift
                        0b011 => ((x as u128) * (y as u128) >> 32) as u64, 
                        // TODO overflow semantics are not done correctly here
                        // DIV (signed divide)
                        0b100 => match (x, y) {
                            // Divide-by-zero (doesn't raise exception)
                            (_, 0) => (-1 as i64) as u64,
                            // Overflow = most-negative divided by -1
                            (0x8000_0000, 0xFFFF_FFFF) => 0x8000_0000,
                            // Normal signed divide - cast bits to i64, div, then cast to u64
                            (x, y) => ((x as i64) / (y as i64)) as u64
                        },
                        // DIVU (unsigned divide)
                        0b101 => match (x, y) {
                            // Divide-by-zero (doesn't raise exception)
                            (_, 0) => (-1 as i64) as u64,
                            // Normal unsigned divide
                            (x, y) => x / y
                        }
                        // REM (signed remainder)
                        0b110 => match (x, y) {
                            // Divide-by-zero (doesn't raise exception)
                            (x, 0) => x,
                            // Overflow = most-negative divided by -1
                            (0x8000_0000, 0xFFFF_FFFF) => 0,
                            // Normal signed remainder - cast bits to i64, div, then cast to u64
                            (x, y) => ((x as i64) % (y as i64)) as u64
                        },
                        // REMU (unsigned remainder)
                        0b111 => match (x, y) {
                            // Divide-by-zero (doesn't raise exception)
                            (x, 0) => x,
                            // Normal unsigned remainder
                            (x, y) => x % y
                        },
                        _ => unreachable!("Impossible funct3")
                    }

                    _ => bail!(UnsupportedParam(format!("Op funct7/3: {:07b}, {:03b}", funct7, funct3)))
                };
                conn.sreg.write(rd, new_val)?;
            }
            (Op32, InstructionBits::RType{rd, funct3, rs1, rs2, funct7}) => {
                // Op32 = do all operations with 32-bit values, then sign-extend the 32-bit version up to 64-bit
                const ALT: u8 = 0b0100000;
                let x = conn.sreg.read(rs1)? as u32;
                let y = conn.sreg.read(rs2)? as u32;
                let new_val = match (funct7, funct3) {
                    (0, 0b000) => x.wrapping_add(y) as u64, // ADDW

                    (0, 0b001) => (x << y) as u64, // SLLW
                    (0, 0b101) => (x >> y) as u64, // SRLW

                    (ALT, 0b000) => x.wrapping_sub(y) as u64, // SUBW
                    (ALT, 0b101) => ((x as i32) >> y) as u32 as u64, // SRAW

                    (1, funct3) => match funct3 {
                        // MULW
                        // Multiply bottom 32-bits (obtained by casting) and sign-extend to 64
                        0b000 => ((x as i32) * (y as i32)) as i64 as u64,
                        // DIVW
                        0b100 => match (x, y) {
                            // Divide-by-zero (doesn't raise exception)
                            (_, 0) => (-1 as i32) as u32 as u64,
                            // Overflow = most-negative divided by -1
                            // TODO - should this be sign-extended as I'm currently doing?
                            (0x8000_0000, 0xFFFF_FFFF) => 0x8000_0000 as u32 as i32 as i64 as u64,
                            // Normal signed divide - cast bits to i32, div, then sign extend
                            (x, y) => ((x as i32) / (y as i32)) as i64 as u64
                        },
                        // DIVUW
                        0b101 => match (x, y) {
                            // Divide-by-zero (doesn't raise exception)
                            (_, 0) => (-1 as i32) as u32 as u64,
                            // Normal signed divide - cast bits to i32, div, then cast to u32, then sign-extend
                            (x, y) => (x / y) as i32 as i64 as u64
                        },
                        // REMW
                        0b110 => match (x, y) {
                            // Divide-by-zero (doesn't raise exception)
                            // sign-extend
                            (x, 0) => x as i32 as i64 as u64,
                            // Overflow = most-negative divided by -1
                            (0x8000_0000, 0xFFFF_FFFF) => 0,
                            // Normal signed divide - cast bits to i32, div, then sign extend
                            (x, y) => ((x as i32) % (y as i32)) as i64 as u64
                        },
                        // REMUW
                        0b111 => match (x, y) {
                            // Divide-by-zero (doesn't raise exception)
                            // sign-extend, always
                            (x, 0) => x as i32 as i64 as u64,
                            // Normal signed divide - div, then sign extend from u32 -> i32 -> i64
                            (x, y) => (x % y) as i32 as i64 as u64
                        },
                        _ => bail!(UnsupportedParam(format!("Op32 MULDIV funct3: {:03b}", funct3)))
                    }

                    _ => bail!(UnsupportedParam(format!("Op32 funct7/3: {:07b}, {:03b}", funct7, funct3)))
                };
                conn.sreg.write(rd, (new_val as i32) as i64 as u64)?;
            }

            (AddUpperImmPC, InstructionBits::UType{rd, imm}) => {
                // This has to be sign-extend! imm is a u32
                // 32-bit RISC-V can get away with not extending it, because it's already the right width.
                // We have to extend it.
                let addr = imm.sign_extend_u64().wrapping_add(conn.pc);
                conn.sreg.write(rd, addr)?;
            }

            (LoadUpperImm, InstructionBits::UType{rd, imm}) => {
                // Must be sign extended for same reason as above
                conn.sreg.write(rd, imm.sign_extend_u64())?;
            }

            (JumpAndLink, InstructionBits::JType{rd, imm}) => {
                conn.sreg.write(rd, conn.pc + 4)?;
                next_pc = Some(conn.pc.wrapping_add(imm.sign_extend_u64()));
            }
            (JumpAndLinkRegister, InstructionBits::IType{rd, funct3: 0b000, rs1, imm}) => {
                // Read rs1, add immediate, unset bottom bit
                next_pc = Some(conn.sreg.read(rs1)?.wrapping_add(imm.sign_extend_u64()) & (!1));

                conn.sreg.write(rd, conn.pc + 4)?;
            }

            (Branch, InstructionBits::BType{funct3, rs1, rs2, imm}) => {
                let src1 = conn.sreg.read(rs1)?;
                let src2 = conn.sreg.read(rs2)?;

                let take_branch = match funct3 {
                    0b000 => src1 == src2, // BEQ
                    0b001 => src1 != src2, // BNE
                    0b100 => (src1 as i64) < (src2 as i64), // BLT
                    0b101 => (src1 as i64) > (src2 as i64), // BGE
                    0b110 => (src1 as u64) < (src2 as u64), // BLTU
                    0b111 => (src1 as u64) > (src2 as u64), // BGEU

                    _ => bail!(UnsupportedParam(format!("funct3 for branch {:03b}", funct3)))
                };

                if take_branch {
                    next_pc = Some(conn.pc.wrapping_add(imm.sign_extend_u64()));
                }
            }
            _ => bail!("Invalid opcode/instruction pair passed to RV32I")
        }

        Ok(next_pc)
    }
}