1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
use crate::processor::isa_mods::*;

use crate::processor::exceptions::IllegalInstructionException::UnsupportedParam;

/// Base ISA module for RV32 ISAs.
/// Implements Integer and Multiply extensions.
pub struct Rv32im {}
impl IsaMod<Rv32imConn<'_>> for Rv32im {
    type Pc = u32;

    fn will_handle(&self, opcode: Opcode, _inst: InstructionBits) -> bool {
        use crate::processor::decode::Opcode::*;
        match opcode {
            Load | Store | OpImm | Op => true,
            AddUpperImmPC | LoadUpperImm | JumpAndLink | JumpAndLinkRegister | Branch => true,

            _ => false
        }
    }

    fn execute(&mut self, opcode: Opcode, inst: InstructionBits, _inst_bits: u32, conn: Rv32imConn) -> ProcessorResult<Option<Self::Pc>> {
        let mut next_pc = None;

        use crate::processor::decode::Opcode::*;
        match (opcode, inst) {
            (Load, InstructionBits::IType{rd, funct3, rs1, imm}) => {
                let addr = conn.sreg.read(rs1)?.wrapping_add(imm.sign_extend_u32());
                let new_val = match funct3 {
                    // LB, LH, LW sign-extend if necessary
                    0b000 => (conn.memory.load_u8(addr as u64)? as i8) as i32 as u32, // LB
                    0b001 => (conn.memory.load_u16(addr as u64)? as i16) as i32 as u32, // LH
                    0b010 => conn.memory.load_u32(addr as u64)?, // LW
                    // LBU, LHU don't sign-extend
                    0b100 => conn.memory.load_u8(addr as u64)? as u32, // LBU
                    0b101 => conn.memory.load_u16(addr as u64)? as u32, // LBU

                    _ => bail!(UnsupportedParam(format!("Load funct3 {:03b}", funct3)))
                };
                conn.sreg.write(rd, new_val)?;
            }
            (Store, InstructionBits::SType{funct3, rs1, rs2, imm}) => {
                let addr = conn.sreg.read(rs1)?.wrapping_add(imm.sign_extend_u32());
                match funct3 {
                    0b000 => conn.memory.store_u8(addr as u64, (conn.sreg.read(rs2)? & 0xFF) as u8)?,
                    0b001 => conn.memory.store_u16(addr as u64, (conn.sreg.read(rs2)? & 0xFFFF) as u16)?,
                    0b010 => conn.memory.store_u32(addr as u64, (conn.sreg.read(rs2)? & 0xFFFF_FFFF) as u32)?,
                    
                    _ => bail!(UnsupportedParam(format!("Store funct3 {:03b}", funct3)))
                };
            }

            (OpImm, InstructionBits::IType{rd, funct3, rs1, imm}) => {
                let input = conn.sreg.read(rs1)?;
                let imm = imm.sign_extend_u32();
                let new_val = match (imm, funct3) {
                    (imm, 0b000) => input.wrapping_add(imm), // ADDI
                    (imm, 0b010) => if (input as i32) < (imm as i32) { 1 } else { 0 }, // SLTI
                    (imm, 0b011) => if input < imm { 1 } else { 0 }, // SLTU
                    (imm, 0b100) => input ^ imm, // XORI
                    (imm, 0b110) => input | imm, // ORI
                    (imm, 0b111) => input & imm, // ANDI

                    (shamt, 0b001) => input << shamt, // SLLI
                    (imm, 0b101) => {
                        // Check top bits of imm to see if arithmetic or logical
                        // shamt = bottom-five-bits
                        let shamt = imm & 0x1F;
                        if ((imm >> 10) & 1) == 1 {
                            // SRAI
                            // input as i32 => shift will be arithmetic
                            // cast back to u32 afterwards
                            ((input as i32) >> shamt) as u32
                        } else {
                            // SRLI
                            input >> shamt
                        }
                    }

                    _ => unreachable!("OpImm funct3 {:03b}", funct3)
                };
                conn.sreg.write(rd, new_val)?;
            }

            (Op, InstructionBits::RType{rd, funct3, rs1, rs2, funct7}) => {
                const ALT: u8 = 0b0100000;
                let x = conn.sreg.read(rs1)?;
                let y = conn.sreg.read(rs2)?;
                let new_val = match (funct7, funct3) {
                    (0, 0b000) => x.wrapping_add(y), // ADD
                    (ALT, 0b000) => x.wrapping_sub(y), // SUB

                    (0, 0b001) => x << y, // SLL
                    
                    (0, 0b010) => if (x as i32) < (y as i32) { 1 } else { 0 }, // SLT
                    (0, 0b011) => if x < y { 1 } else { 0 }, // SLTU

                    (0, 0b100) => x ^ y, // XOR 
                    (0, 0b101) => x >> y, // SRL
                    (ALT, 0b101) => ((x as i32) >> y) as u32, // SRA
                    (0, 0b110) => x | y, // OR
                    (0, 0b111) => x & y, // AND

                    (1, funct3) => match funct3 {
                        0b000 => x * y, // MUL
                        // MULH
                        // Widen x,y to i64, multiply, shift down so we take top 32 bits of result
                        0b001 => ((x as i32 as i64) * (y as i32 as i64) >> 32) as i32 as u32,
                        // MULHSU
                        // Widen x to i64, y to u64 *then* i64 (doesn't sign-extend), multiply + shift
                        0b010 => ((x as i32 as i64) * (y as u64 as i64) >> 32) as i32 as u32, 
                        // MULHU
                        // Widen x,y to u64, multiply+shift
                        0b011 => ((x as u64) * (y as u64) >> 32) as u32, 
                        // TODO overflow semantics are not done correctly here
                        // DIV (signed divide)
                        0b100 => match (x, y) {
                            // Divide-by-zero (doesn't raise exception)
                            (_, 0) => (-1 as i32) as u32,
                            // Overflow = most-negative divided by -1
                            (0x8000_0000, 0xFFFF_FFFF) => 0x8000_0000,
                            // Normal signed divide - cast bits to i32, div, then cast to u32
                            (x, y) => ((x as i32) / (y as i32)) as u32
                        },
                        // DIVU (unsigned divide)
                        0b101 => match (x, y) {
                            // Divide-by-zero (doesn't raise exception)
                            (_, 0) => (-1 as i32) as u32,
                            // Normal unsigned divide
                            (x, y) => x / y
                        }
                        // REM (signed remainder)
                        0b110 => match (x, y) {
                            // Divide-by-zero (doesn't raise exception)
                            (x, 0) => x,
                            // Overflow = most-negative divided by -1
                            (0x8000_0000, 0xFFFF_FFFF) => 0,
                            // Normal signed remainder - cast bits to i32, div, then cast to u32
                            (x, y) => ((x as i32) % (y as i32)) as u32
                        },
                        // REMU (unsigned remainder)
                        0b111 => match (x, y) {
                            // Divide-by-zero (doesn't raise exception)
                            (x, 0) => x,
                            // Normal unsigned remainder
                            (x, y) => x % y
                        },
                        _ => unreachable!("Impossible funct3")
                    }

                    _ => bail!(UnsupportedParam(format!("Op funct7/3: {:07b}, {:03b}", funct7, funct3)))
                };
                conn.sreg.write(rd, new_val)?;
            }

            (AddUpperImmPC, InstructionBits::UType{rd, imm}) => {
                let addr = imm.sign_extend_u32().wrapping_add(conn.pc);
                conn.sreg.write(rd, addr)?;
            }

            (LoadUpperImm, InstructionBits::UType{rd, imm}) => {
                conn.sreg.write(rd, imm.sign_extend_u32())?;
            }

            (JumpAndLink, InstructionBits::JType{rd, imm}) => {
                conn.sreg.write(rd, conn.pc + 4)?;
                next_pc = Some(conn.pc.wrapping_add(imm.sign_extend_u32()));
            }
            (JumpAndLinkRegister, InstructionBits::IType{rd, funct3: 0b000, rs1, imm}) => {
                // Read rs1, add immediate, unset bottom bit
                next_pc = Some(conn.sreg.read(rs1)?.wrapping_add(imm.sign_extend_u32()) & (!1));

                conn.sreg.write(rd, conn.pc + 4)?;
            }

            (Branch, InstructionBits::BType{funct3, rs1, rs2, imm}) => {
                let src1 = conn.sreg.read(rs1)?;
                let src2 = conn.sreg.read(rs2)?;

                let take_branch = match funct3 {
                    0b000 => src1 == src2, // BEQ
                    0b001 => src1 != src2, // BNE
                    0b100 => (src1 as i32) < (src2 as i32), // BLT
                    0b101 => (src1 as i32) > (src2 as i32), // BGE
                    0b110 => (src1 as u32) < (src2 as u32), // BLTU
                    0b111 => (src1 as u32) > (src2 as u32), // BGEU

                    _ => bail!(UnsupportedParam(format!("funct3 for branch {:03b}", funct3)))
                };

                if take_branch {
                    next_pc = Some(conn.pc.wrapping_add(imm.sign_extend_u32()));
                }
            }
            _ => bail!("Invalid opcode/instruction pair passed to RV32I")
        }

        Ok(next_pc)
    }
}