1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
use crate::processor::elements::cheri::capability::check_capability;
use std::any::Any;
use std::ops::Range;
use std::collections::HashSet;

use crate::processor::elements::memory::*;
use super::capability::*;

/// Memory holding tags for capabilities.
/// Implements MemoryOf<bool>, which checks if the supplied address is a multiple of 16-bytes i.e. the size of a capability.
pub struct TagMemory {
    internal_mem: HashSet<u64>
}
impl TagMemory {
    pub fn new() -> Self {
        TagMemory {
            internal_mem: HashSet::default()
        }
    }
    pub fn range(&self) -> Range<usize> {
        Range{ start: 0, end: usize::MAX }
    }
}
impl MemoryOf<bool> for TagMemory {
    fn read(&mut self, addr: u64) -> MemoryResult<bool> {
        // Should only ask for tags on aligned values
        check_alignment_range::<u128>(addr, &self.range())?;

        let tag_line = addr / (std::mem::size_of::<u128>() as u64);
        Ok(self.internal_mem.contains(&tag_line))
    }
    fn write(&mut self, addr: u64, val: bool) -> MemoryResult<()> {
        check_alignment_range::<u128>(addr, &self.range())?;

        let tag_line = addr / (std::mem::size_of::<u128>() as u64);
        if val {
            self.internal_mem.insert(tag_line);
        } else {
            self.internal_mem.remove(&tag_line);
        }
        Ok(())
    }
}

pub trait CheriMemory<TAddr>: Memory<TAddr> + MemoryOf<SafeTaggedCap, TAddr> {
    fn load_maybe_cap(&mut self, addr: TAddr) -> MemoryResult<SafeTaggedCap> {
        <Self as MemoryOf<SafeTaggedCap, TAddr>>::read(self, addr)
    }
    fn store_maybe_cap(&mut self, addr: TAddr, val: SafeTaggedCap) -> MemoryResult<()> {
        <Self as MemoryOf<SafeTaggedCap, TAddr>>::write(self, addr, val)
    }
    fn store_cap(&mut self, addr: TAddr, val: Cc128Cap) -> MemoryResult<()> {
        <Self as MemoryOf<SafeTaggedCap, TAddr>>::write(self, addr, SafeTaggedCap::from_cap(val))
    }
}

/// Wrapper for AggregateMemory64 that keeps tags, supports MemoryOf<SafeTaggedCap> for reading/writing capabilities.
/// All other Memory variants clear associated tag bits on write.
pub struct CheriAggregateMemory {
    base_mem: AggregateMemory,
    tag_mem: TagMemory
}
impl CheriAggregateMemory {
    pub fn from_base(base_mem: AggregateMemory) -> CheriAggregateMemory {
        CheriAggregateMemory {
            base_mem,
            tag_mem: TagMemory::new()
        }
    }

    pub fn fetch_inst_u32(&mut self, cap: Cc128Cap) -> MemoryResult<u32> {
        check_capability::<u32>(cap, Cc128::PERM_LOAD | Cc128::PERM_EXECUTE)?;

        self.base_mem.load_u32(cap.address())
    }

    pub fn get_full_range_cap(&self) -> Cc128Cap {
        // Generate a capability covering the range of mapped addresses
        let full_range = self.range();
        let full_range_len = full_range.end - full_range.start;
        // Find the minimum alignment and length we need to apply to the memory range,
        // in order to represent it exactly as a capability
        let required_align_mask = Cc128::get_alignment_mask(full_range_len as u128);
        let required_len = Cc128::get_representable_length(full_range_len as u128);

        let full_range_cap_base = (full_range.start as u64) & (required_align_mask as u64);
        let full_range_cap = Cc128::make_max_perms_cap(
            full_range_cap_base, // base
            full_range_cap_base, // put the address at the base
            full_range_cap_base as u128 + required_len as u128 // top
        );

        full_range_cap
    }

    pub fn get_io_values(&self) -> Vec<Option<u64>> {
        self.base_mem.get_io_values()
    }
}
/// Implement MemoryOf<TData> addressed by Cc128Cap, which does all necessary validity checks,
/// for every TData in {u8,u16,u32,u64}
impl<TData> MemoryOf<TData, Cc128Cap> for CheriAggregateMemory where AggregateMemory: MemoryOf<TData, u64> {
    fn read(&mut self, cap: Cc128Cap) -> MemoryResult<TData> {
        check_capability::<TData>(cap, Cc128::PERM_LOAD)?;

        self.base_mem.read(cap.address())
    }
    fn write(&mut self, cap: Cc128Cap, val: TData) -> MemoryResult<()> {
        check_capability::<TData>(cap, Cc128::PERM_STORE)?;

        // Do the write, which also does an alignment check
        self.base_mem.write(cap.address(), val)?;

        // Set the tag on the 128-bit range containing (addr) to false
        // Use an aligned address to clear the tag - otherwise it complains
        self.tag_mem.write(cap.address() & !0xFFFF, false)?;
        // Assert the numerical type cannot extend over multiple tagged regions.
        // We know the address was aligned to size_of<TData>, so as long as that size
        // is smaller than 128-bits we're fine.
        assert!(std::mem::size_of::<TData>() <= 16);

        Ok(())
    } 
}
/// Now we've defined MemoryOf<u8,u16,u32,u64>, combine them into a single Memory trait
impl Memory<Cc128Cap> for CheriAggregateMemory {
    fn range(&self) -> Range<usize> {
        self.base_mem.range().clone()
    }
    fn as_any(&self) -> &dyn Any { self }
}
/// Combine MemoryOf<u8,u16,u32,u64> with MemoryOf<SafeTaggedCap>
impl CheriMemory<Cc128Cap> for CheriAggregateMemory {}
/// Impl a capability-aware view of memory for CHERI instructions
/// e.g. a CHERI Load instruction, which is allowed to load capabilities, would use this version.
impl MemoryOf<SafeTaggedCap, Cc128Cap> for CheriAggregateMemory {
    // read/write funcs that set correct tag bits on reads/writes
    fn read(&mut self, cap: Cc128Cap) -> MemoryResult<SafeTaggedCap> {
        // We don't require PERM_LOAD_CAP, because if it isn't set we just clear the tag (see below).
        // Spec = TR951$8.4, [C]LC
        check_capability::<u128>(cap, Cc128::PERM_LOAD)?;
        let addr = cap.address();

        check_alignment_range::<u128>(addr, &self.base_mem.range())?;

        let base_mem = &mut self.base_mem as &mut dyn MemoryOf<u64>;
        // Must be aligned and in-bounds
        // This is a valid capability if (it's tagged) AND (we have permission to load capabilities)
        let tag = self.tag_mem.read(addr)? && (cap.permissions() & Cc128::PERM_LOAD_CAP != 0);
        let data_top = base_mem.read(addr + 8)?;
        let data_bot = base_mem.read(addr)?;
        Ok(SafeTaggedCap::from_tagged_mem(data_top, data_bot, tag))
    }
    fn write(&mut self, cap: Cc128Cap, val: SafeTaggedCap) -> MemoryResult<()> {
        check_capability::<u128>(cap, Cc128::PERM_STORE | Cc128::PERM_STORE_CAP)?;
        let addr = cap.address();

        check_alignment_range::<u128>(addr, &self.base_mem.range())?;

        // TODO - this shouldn't have to be a dyn object, right?
        let base_mem = &mut self.base_mem as &mut dyn MemoryOf<u64>;
        match val {
            SafeTaggedCap::RawData{ top, bot } => {
                base_mem.write(addr + 8, top)?;
                base_mem.write(addr, bot)?;
                self.tag_mem.write(addr, false)?;
            }
            SafeTaggedCap::ValidCap(cap) => {
                let cap_pebst = Cc128::compress_mem(&cap);
                base_mem.write(addr + 8,    cap_pebst)?;
                base_mem.write(addr,        cap.address())?;
                self.tag_mem.write(addr, true)?;
            }
        }
        Ok(())
    }
}

/// Wrapper for a reference to CheriAggregateMemory that allows integer-mode accesses.
/// Exposes MemoryOf<{u8,u16,u32,u64}, TAddr=u64>.
pub struct IntegerModeCheriAggregateMemory<'a> {
    base_mem: &'a mut CheriAggregateMemory,
    base_cap: Cc128Cap
}
impl<'a> IntegerModeCheriAggregateMemory<'a> {
    pub fn wrap(base_mem: &'a mut CheriAggregateMemory, base_cap: Cc128Cap) -> Self {
        IntegerModeCheriAggregateMemory {
            base_mem,
            base_cap
        }
    }
}
/// Reimplement basic MemoryOf<TData, TAddr=u64> for the integer mode memory.
/// Integer addresses are passed to the underlying [CheriAggregateMemory] inside the base capability,
/// and all checking/security is done inside the [CheriAggregateMemory].
impl<'a, TData> MemoryOf<TData> for IntegerModeCheriAggregateMemory<'a> where CheriAggregateMemory: MemoryOf<TData, Cc128Cap> {
    fn read(&mut self, addr: u64) -> MemoryResult<TData> {
        self.base_cap.set_address_unchecked(addr);
        self.base_mem.read(self.base_cap)
    }
    fn write(&mut self, addr: u64, val: TData) -> MemoryResult<()> {
        self.base_cap.set_address_unchecked(addr);
        self.base_mem.write(self.base_cap, val)
    }
}
impl<'a> Memory for IntegerModeCheriAggregateMemory<'a> {
    fn range(&self) -> Range<usize> {
        self.base_mem.range()
    }
    fn as_any(&self) -> &dyn Any { unreachable!("Should never try to devirtualize an IntegerMode wrapper") }
}
/// Combine MemoryOf<u8,u16,u32,u64> with MemoryOf<SafeTaggedCap>
impl<'a> CheriMemory<u64> for IntegerModeCheriAggregateMemory<'a> {}