
Capability-Based Memory Protection
for Scalable Vector Processing

Samuel Stark

Clare College

This dissertation is submitted on June 6th 2022 for the degree of Master of Philosophy

Declaration

I, Samuel Stark of Clare College, being a candidate for the M.Phil in Advanced Computer
Science, hereby declare that this report and the work described in it are my own work, unaided
except as may be specified below, and that the report does not contain material that has already
been used to any substantial extent for a comparable purpose.

Samuel Stark
June 6th 2022

Total Page Count: 107

Main chapters (excluding front-matter, references, appendix): 49 (pp 13-61)

Main chapters word count: 14,960 words

Word count methodology: ./texcount.pl -1 -sum -merge -q chapters.tex
TeXcount version: 3.2.0.41
Counts body text, heading text, and caption text. Does not include text in tables, figures, code
listings, or appendices. The anonymous version redacts some trivially identifying information,
but uses the same word count as the de-anonymized version. The appendices contain non-
essential data that is summarized in the main text (e.g. full results, details on how to compile
code), or re-statements of work done in the main text (e.g. a summary of all changes made to
the CHERI-RISC-V spec).

Acknowledgements

There are many people aside from me who have contributed to the success of this project. It
would have been much more difficult without them, so I’d like to take a moment to thank them
here.

Firstly my supervisor, Simon Moore, has been a huge asset throughout, always willing to
answer my questions when needed. This project is but one small part of CHERI, and his advice
helped me find where my project fit in the grand scheme of things.

Speaking of CHERI, this project builds on work done since CHERI’s inception in 2014. Jon
Woodruff and Jessica Clarke helpedme navigate this vast sea of prior work, identifying resources
and problem areas for me to use/address.

I’d also like to thank my father, Gavin Stark, for many helpful technical conversations on the
project; and the rest of my family and Elizabeth Yallop for help on the less technical elements
of this dissertation.

Abstract

Capability-Based Memory Protection for Scalable Vector Processing

CHERI, a generic architecture extension which improves memory safety, has garnered attention
from industry partners for its low overhead and compatibility with existing source code. CHERI
has been adapted to multiple ISAs, including RISC-V and Arm, but not to any scalable vector
processors.

Vector processing, where the same operation is performed on multiple elements of a “vector” in
parallel, is used everywhere in modern computing from high-performance number-crunching
to the humble memcpy. Arm SVE[1] and RISC-V V[2] (a.k.a. RVV) are new flagship vector
extensions for Arm and RISC-V, which use a “vector-length agnostic programming model” to
allow hardware implementations to choose their vector lengths. These scalable vector models
are intended to stay in use long into the future, and it is essential for CHERI to support them.

This dissertation focuses on RVV, presenting and evaluating a possible “CHERI-RVV” combin-
ation ISA by building and testing a reference implementation in Rust. We find that RVV is
easily adaptable to CHERI with no issues, even maintaining binary compatibility with vanilla
RVV programs, although other models like Arm SVE may require more investigation. We
find a set of issues with the current CHERI compiler that make source-level compatibility
difficult, and show they can be easily resolved with engineering effort. Finally, we explore
storing capabilities-in-vectors in a limited context, to allow implementing memcpy with vector
instructions, and show it does not violate security properties.

We conclude that it is viable to combine RVV with CHERI to enable vectorized arithmetic and
memcpy operations without sacrificing performance, source-level compatibility, or memory
protection.

Contents

1 Introduction 13
1.1 Motivation . 14
1.2 Hypotheses and Aims . 15

2 Background 16
2.1 RISC-V . 16
2.2 A brief history of vector processing . 17
2.3 The RVV vector model . 17

2.3.1 vtype . 18
2.3.2 vl and vstart — Prestart, body, tail 19
2.3.3 Masking — Active/inactive elements 20
2.3.4 Exception handling . 21

2.3.4.1 Imprecise vector traps . 21
2.3.4.2 Precise vector traps . 21
2.3.4.3 Other modes . 22

2.3.5 Summary . 23
2.4 Previous RVV implementations . 23
2.5 RVV memory instructions . 24

2.5.1 Unit and Strided accesses . 25
2.5.2 Unit fault-only-first loads . 26
2.5.3 Indexed accesses . 27
2.5.4 Unit whole-register accesses . 28
2.5.5 Unit bytemask accesses . 28

2.6 CHERI . 29
2.6.1 CHERI-RISC-V ISA . 30
2.6.2 Instruction changes . 30
2.6.3 Capability and Integer encoding mode 31
2.6.4 Pure-capability and Hybrid compilation modes 32
2.6.5 Capability relocations . 32

3 Hardware emulation investigation 33
3.1 Developing the emulator . 33

3.1.1 Emulating CHERI . 34
3.1.1.1 rust-cheri-compressed-cap 34
3.1.1.2 Integrating into the emulator 35

3.1.2 Emulating vectors . 36
3.1.2.1 Decoding phase . 37
3.1.2.2 Fast-path checking phase . 38
3.1.2.3 Execution phase . 38
3.1.2.4 Integer vs. Capability encoding mode 38

3.2 Fast-path calculations . 39
3.2.1 Possible fast-path outcomes . 39
3.2.2 Whole-access fast-paths . 39
3.2.3 m-element known-range fast-paths . 40

3.3 Going beyond the emulator . 42
3.3.1 Misaligned accesses . 42
3.3.2 Atomicity of accesses/General memory model 42
3.3.3 Relaxed access ordering and precise traps 43

3.4 Testing and evaluation . 43
Hypothesis H-1 - Feasibility . 44
Hypothesis H-2 - Fast-path checks . 44

4 The CHERI-RVV software stack 45
4.1 Compiling vector code . 45

4.1.1 Available compilers . 45
4.1.2 Automatic vectorization . 46
4.1.3 Vector intrinsics . 46
4.1.4 Inline assembly . 46
4.1.5 RVV vs. Arm SVE . 48

4.2 Compiling vector code with CHERI-Clang . 49
4.2.1 Adapting vector assembly instructions to CHERI 49
4.2.2 Adapting vector intrinsics to CHERI 50
4.2.3 Storing scalable vectors on the stack 50

4.3 Testing and evaluation . 51
Hypothesis H-3 - Compiling/running legacy code in integer mode 51
Hypothesis H-4 - Converting legacy code to pure-capability code 52
Hypothesis H-5 - Saving vectors on the stack 53
Hypothesis H-6 - Running CHERI-RVV code in a multiprocessing system . . . 54

4.4 Recommended changes for CHERI-Clang . 54

5 Capabilities-in-vectors 55
5.1 Extending the emulator . 55
5.2 Testing and evaluation . 56

Hypothesis H-7 - Holding capabilities in vectors 57
Hypothesis H-8 - Sending capabilities between vectors and memory 58
Hypothesis H-9 - Manipulating capabilities in vectors 59

6 Conclusion 60
6.1 Evaluating hypotheses . 60
6.2 Future work . 61

References 62

A rust_cheri_compressed_cap documentation 66

B Code Snippets 79
B.1 C example — Basic RVV program . 80
B.2 C example — Saving/restoring vector registers 81
B.3 C example — Arm SVE . 83
B.4 riscv-v-lite — Vector memory accesses . 86

C Fast path vector checks 90
C.1 Masked accesses . 90
C.2 Unit accesses . 91
C.3 Strided accesses . 91
C.4 Indexed accesses . 92

D Compiler information 93
D.1 Vanilla RVV command-line options . 93
D.2 CHERI-RVV command-line options . 93
D.3 Compiler support for RVV . 94
D.4 Ensuring compatibility between different compilers 95
D.5 Building riscv-gnu-toolchain with vector support 98

E CHERI-RVV changes from CHERI and RVV 99
E.1 Loading/storing with capabilities . 99
E.2 Capabilities-in-vectors changes . 100

E.2.1 Relevant properties . 101

F Full test results 103
F.1 Initial Smoke Tests . 103
F.2 vector_memcpy . 103
F.3 vector_memcpy_pointers . 106

G Artifacts 107

CHAPTER 1

Introduction

Since 2010, the Cambridge Computer Lab (in association with SRI) has been developing the
CHERI1 architecture extension, which improves the security of any given architecture by
checking all memory accesses in hardware. The core impact of CHERI, on a hardware level, is
that memory can no longer be accessed directly through raw addresses, but must pass through
a capability[3]. Capabilities are unforgeable tokens that grant fine-grained access to ranges of
memory. Instead of generating them from scratch, capabilities must be derived from another
capability with greater permissions. For example, a capability giving read-write access to an
array of structures can be used to create a sub-capability granting read-only access to a single
element. This vastly reduces the scope of security violations through spatial errors (e.g. buffer
overflows[4]), and creates interesting opportunities for software compartmentalization[5].

Industry leaders have recognized the value CHERI provides. Arm Inc have manufactured
the Morello System-on-Chip, based on their Neoverse N1 CPU, which incorporates CHERI
capabilities into the Armv8.2 ISA. While this represents a great step forward, there are still
elements on the SoC that haven’t fully embraced CHERI (e.g. the GPU), and architecture
extensions that haven’t been investigated in the context of CHERI. One such example is Arm’s
Scalable Vector Extension (introduced in Armv8.2 but not included in Neoverse N1), which is
designed to remain in use well into the future[1]. Supporting this and other scalable vector
ISAs in CHERI is essential to CHERI’s long-term relevance.

In the context of modern computer architecture, vector processing is the practice of dividing
a large hardware register into a vector of multiple elements and executing the same operation
on each element in a single instruction2. This data-level parallelism can drastically increase
throughput, particularly for arithmetic-heavy programs. However, before computing arithmetic,
the vectors must be populated with data.

1Capability Hardware Enhanced RISC Instructions
2This is a SIMD (Single Instruction Multiple Data) paradigm.

13

1.1 Motivation

Modern vector implementations all provide vector load/store instructions to access a whole
vector’s worth of memory. These range from simple contiguous accesses (where all elements
are next to each other), to complex indexed accesses (where each element loads from a different
location based on another vector). They can also have per-element semantics, e.g. “elements
must be loaded in order, so if one element fails the preceding elements are still valid”[2,
Section 7.7]. If CHERI CPUs want to benefit from vector processing’s increased performance
and throughput, they must support those instructions at some level. But adding CHERI’s
bounds-checking to the mix may affect these semantics, and could impact performance (e.g.
checking each element’s access in turn may be slow).

Vector memory access performance is more critical than one may initially assume, because
vectors are used for more than just computation. A prime example is memcpy: for x86_64,
glibc includes multiple versions of the function3 taking advantage of vector platforms, then
selects one to use at runtime4. These implementations are written in assembly and heavily
optimized. If the memory accesses are hitting the cache, a few extra cycles of bounds-checking
for each access could actually make a noticeable difference.

memcpy also raises the important question of how the vector model interacts with capabil-
ities. In non-CHERI processors, memcpy will copy pointers around in memory without fuss.
For a CHERI-enabled vector processor to support this, it would need to be able to load/store
capabilities from vectors without violating any security guarantees. This may require more
constraints — for example, each vector register likely needs to be at least as large as a single
capability.

To explore this topic, we chose to focus on the RISC-V Vector extension[2] (shortened to
RVV throughout). As of November 2021 this has been ratified by RISC-V International5, and
will be RISC-V’s standard vector instruction set moving forward. This has two key benefits.
Studying RVV will allow reference “CHERI-RVV” implementations to be built for the CHERI
project’s open-source RISC-V cores6, which don’t currently support vector processing. Secondly,
RVV is a scalable vector model, where the length of each vector is implementation-dependent.
This has more potential roadblocks than a fixed-length vector model, and investigating them
here will make life easier if Arm wish to integrate their Scalable Vector Extension with CHERI
later down the road.

3It appears memcpy is implemented as a copy of memmove.
4sysdeps/x86_64/multiarch/ifunc-memmove.h in bminor/glibc on GitHub
5https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions
6https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-risc-v.html

14

https://github.com/bminor/glibc/blob/7b1cfba79ee54221ffa7d7879433b7ee1728cd76/sysdeps/x86_64/multiarch/ifunc-memmove.h
https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-risc-v.html

1.2 Hypotheses and Aims

The goal of this project is to investigate the impact of, and the roadblocks for, integrating a
scalable vector architecture with CHERI’s memory protection system. In particular, we focus
on integrating RVV with the CHERI-RISC-V ISA, with the aim of enabling a future CHERI-RVV
implementation and informing the approach for a future CHERI Arm SVE implementation.

The investigation was carried out by designing and testing a CHERI-RVV emulator written
in Rust, but that is only a single implementation. To show that RVV can be integrated with
CHERI-RISC-V for a wide range of processors, we use information gathered from the emulator
to check nine hypotheses (Table 1.1). Hypotheses H-1 and H-2 consider basic feasibility and
potential hardware performance issues. Hypotheses H-3 to H-6 ensure that vector software
is compatible with potential CHERI-RVV software stacks. Hypotheses H-7 to H-9 considers
capabilities-in-vectors: the conditions under which vector registers can hold capabilities, and
vectorized instructions can manipulate them.

This document also examines current practical realities, such as the limitations of the
current CHERI-RVV software stack, and explains how to compile/execute CHERI-RVV code on
bare-metal platforms. The RVV and CHERI-RISC-V specifications are succinctly explained in
Chapter 2.

Hardware Hypotheses — Chapter 3

H-1 It is possible to use CHERI capabilities as memory references in all vector instructions.
H-2 The capability bounds checks for vector elements within a known range (e.g. a cache

line) can be performed in a single check, amortizing the cost.

Software Hypotheses — Chapter 4

H-3 Vector code can be compiled in legacy forms (with integer addressing) and function
correctly on CHERI with no source code changes.

H-4 Legacy vector code can be compiled into a pure-capability form with no changes.
H-5 Vector code that saves/restores variable-length vectors to/from the stack can be

compiled on CHERI-RVV with no source code changes.
H-6 CHERI-vector code can run correctly in multiprocessing systems, where execution

may be paused and resumed on interrupts or context switches.

Capabilities-in-Vectors — Chapter 5

H-7 It is possible for vector registers to hold capabilities to enable copyingwithout violating
CHERI security principles.

H-8 It is possible for vector memory accesses to load and store capabilities from vector
registers without violating CHERI security principles.

H-9 It is possible for vector instructions to manipulate capabilities in vector registers
without violating CHERI security principles.

Table 1.1: Project Hypotheses

15

CHAPTER 2

Background

This chapter describes RISC-V (Section 2.1), RVV (Sections 2.2 to 2.4), and CHERI (Section 2.6)
to the detail required to understand the rest of the dissertation. It summarizes the relevant
sections of the RISC-V unprivileged spec[6], the RISC-V “V” extension specification v1.0[2,
Sections 1–9, 17], the TR-951 CHERI ISAv8 technical report[7, Chapters 5, 8], and the TR-949
technical report about C/C++ safety on CHERI[8, Section 4.4, Appendix C]. Both vectors and
CHERI are described, because this dissertation caters to those who may be familiar with one
but not the other.

2.1 RISC-V

RISC-V is an open family of ISAs which defines “base integer ISAs” (e.g. all 64-bit RISC-V cores
implement the RV64I base ISA) and extensions (e.g. the “M” extension for integer multiplication).
A base instruction set combined with a set of extensions is known as a RISC-V ISA. Because
RISC-V is open, anyone can design, manufacture, and sell chips implementing any RISC-V ISA.

Each RISC-V implementation has a set of constant parameters. The most common example
is XLEN, the length of an integer register in bits, which is tied to the base integer ISA (e.g. 64-bit
ISA implies XLEN=64). Other constant parameters include CLEN, the length of a capability
in bits, defined by CHERI relative to XLEN; and VLEN and ELEN, which are used by RVV and
entirely implementation-defined.

The extensions of most relevance to this project are the “V” vector extension (RVV, specified
in [2]) and the CHERI extension (specified in [7]). RVV has recently been officially ratified,
and is the de facto vector extension for RISC-V. The following sections summarize the vector
extension, how it accesses memory, and previous implementations in academia.

16

2.2 A brief history of vector processing

Many vector implementations (Intel SSE/AVX, Arm’s Advanced SIMD and Neon) use fixed-
length vectors - e.g. 128-bit vectors which a program interprets as four 32-bit elements. As the
industry’s desire for parallelism grew, new implementations had to be designed with longer
vectors of more elements. For example, Intel SSE/SSE2 (both 128-bit) was succeeded by AVX
(128 and 256-bit), then AVX2 (entirely 256-bit), then AVX-512 (512-bit). Programs built for one
extension, and hence designed for a specific vector size, could not automatically take advantage
of longer vectors.

Scalable vectors address this by not specifying the vector length, and instead calculating
it on the fly. Instead of hardcoding “this loop iteration uses a single vector of four 32-bit
elements”, the program has to ask “how many 32-bit elements will this iteration use?”. This
gives hardware designersmore freedom, letting them select a suitable hardware vector length for
their power/timing targets, while guaranteeing consistent execution of programs on arbitrarily-
sized vectors. RVV uses a scalable vector model.

2.3 The RVV vector model

Summarizes [2, Sections 1-6, 17]
RVV defines thirty-two vector registers, each of an implementation-defined constant width

VLEN. These registers can be interpreted as vectors of elements. The program can configure the
size of elements, and the implementation defines a maximum width ELEN. Fig. 2.1 shows a
simple example.

RVV also adds some state that defines how the vector registers are used (see Fig. 2.2).
These are stored in RISC-V Control and Status Registers (CSRs), which the program can read.
vtype (Section 2.3.1) defines how the vector registers are split into elements. vstart and vl
(Section 2.3.2) divides the elements into three disjoint subsets: prestart, the body, and the tail.
Masked accesses (Section 2.3.3) further divide the body into active and inactive elements. This
section also describes the vector exception model (Section 2.3.4).

VLEN=128

ELEN=32

Figure 2.1: Example of a RVV vector register
VLEN = 128, ELEN = 32

17

...

struct VectorData {

 vtype: (SEW, LMUL),

 vstart: uint,

 vl: uint

}

v0-v31

VLEN

Figure 2.2: Summary of additional state used by RVV

2.3.1 vtype

The vtype CSR contains two key fields that describe how vector instructions interpret the
contents of vector registers. The first is the Selected Element Width (SEW), which is self-
explanatory. It can be 8, 16, 32, or 64. 128-bit elements are referenced a few times throughout
but haven’t been formally specified (see [2, p10, p32]).

The second field is the Vector Register Group Multiplier (LMUL). Vector instructions don’t
just operate over a single register, but over a register group as defined by this field. For example,
if LMUL=8 then each instruction would operate over 8 register’s worth of elements. These
groups must use aligned register indices, so if LMUL=4 all vector register operands should be
multiples of 4 e.g. v0, v4, v8 etc. In some implementations this may increase throughput,
which by itself is beneficial for applications.

However, the true utility of LMUL lies in widening/narrowing operations (see Fig. 2.3). For
example, an 8-by-8-bit multiplication can produce 16-bit results. Because the element size
doubles, the number of vector registers required to hold the same number of elements also
doubles. Doubling LMUL after such an operation allows subsequent instructions to handle all
the results at once. At the start of such an operation, fractional LMUL (1/2, 1/4, or 1/8) can be
used to avoid subsequent results using too many registers.

#0 #1 #2 #3 #4 #5 #6 #7

#0 #1 #2 #3

#4 #5 #6 #7

SEW=32

SEW=16

widening operation

LMUL=2

LMUL=1

Figure 2.3: Example of using LMUL to access results of widening operations

18

vl=4vstart=0

(a) Fully utilized vector

body
prestart tail

vl=3vstart=1

(b) Partially utilized vector

Figure 2.4: Examples of vector utilization with vl and vstart

vtype also encodes two flags: mask-agnostic and tail-agnostic. If these are set, the imple-
mentation is allowed to overwrite any masked-out or tail elements with all 1s.

Most vector instructions will interpret their operands using vtype, but this is not always
the case. Some instructions (such as memory accesses) use different Effective Element Widths
(EEW) and Effective LMULs (EMUL) for their operands. In the case of memory accesses, the EEW
is encoded in the instruction bits and the EMUL is calculated to keep the number of elements
consistent. Another example is widening/narrowing operations, which by definition have to
interpret the destination registers differently from the sources.

Programs update vtype through the vsetvl family of instructions. These are designed
for a “stripmining” paradigm, where each iteration of a loop processes some elements until
all elements are processed. vsetvl instructions take a requested vtype and the number of
remaining elements to process (the Application Vector Length or AVL), and return the number
of elements that will be processed in this iteration. This value is saved in a register for the
program to use, and also saved in the internal vl CSR.

2.3.2 vl and vstart — Prestart, body, tail

The first CSR is the Vector Length vl, which holds the number of elements that could be
updated from a vector instruction. The program updates this value through fault-only-first
loads (Section 2.5.2) and more commonly vsetvl instructions.

In the simple case, vl is equal to the total available elements (see Fig. 2.4a). It can also be
fewer (see Fig. 2.4b), in which case vector instructions will not write to elements in the “tail”
(i.e. elements past vl). This eliminates the need for a ‘cleanup loop’ common in fixed-length
vector programs.

In a similar vein, vstart specifies “the index of the first element to be executed by a
vector instruction”. Elements before vstart are known as the prestart and are not touched
by executed instructions. It is usually only set by the hardware whenever it is interrupted
mid-instruction (see Fig. 2.5 and Section 2.3.4) so that the instruction can be re-executed later

19

without corrupting completed values. Whenever a vector instruction completes, vstart is
reset to zero.

The program can set vstart manually, but it may not always work. If an implementation
couldn’t arrive at the value itself, then it is allowed to reject it. The specification gives an
example where a vector implementation never takes interrupts during an arithmetic instruction,
so it would never set vstart during an arithmetic instruction, so it could raise an exception if
vstart was nonzero for an arithmetic instruction.

2.3.3 Masking — Active/inactive elements

Most vector instructions allow for per-elementmasking (see Fig. 2.6). When masking is enabled,
register v0 acts as the ‘mask register’, where each bit corresponds to an element in the vector1.
If the mask bit is 0, that element is active and will be used as normal. If the mask bit is 1,
that element will be inactive and not written to (or depending on the mask-agnostic setting,
overwritten with 1s). When masking is disabled, all elements are active.

vstart=6

vstart=0 *trap*

(handle trap)

Figure 2.5: Example of the hardware setting vstart after a trap

0 1 0 0 1 1 0 1mask

output

Figure 2.6: Example of masking a vector operation

1A single vector register will always have enough bits for all elements. The maximum element count is found
when SEW is minimized (8 bits) and LMUL is maximized (8 registers), and is equal to VLEN * LMUL / SEW =
VLEN * 8 / 8 = VLEN.

20

2.3.4 Exception handling

Summarizes [2, Section 17]
During the execution of a vector instruction, two events can prevent an instruction from

fully completing: a synchronous exception in the instruction itself, or an asynchronous interrupt
from another part of the system. Implementations may choose to wait until an instruction
fully completes before handling asynchronous interrupts, making it unnecessary to pause
the instruction halfway through, but synchronous exceptions cannot be avoided in this way
(particularly where page fault exceptions must be handled transparently).

The RVV specification defines twomodes for ‘trapping’ these events, which implementations
may choose between depending on the context (e.g. the offending instruction), and notes two
further modes which may be used in further extensions. All modes start by saving the PC of
the trapping instruction to a CSR *epc.

2.3.4.1 Imprecise vector traps

Imprecise traps are intended for events that are not recoverable, where “reporting an error and
terminating execution is the appropriate response”. They do not impose any extra requirements
on the implementation. For example, an implementation that executes instructions out-of-order
does not need to guarantee that instructions older than *epc have completed, and is allowed
to have completed instructions newer than *epc.

If the trap was triggered by a synchronous exception, the vstart CSR must be updated
with the element that caused it. The specification calls out synchronous exceptions in particular,
but does not mention asynchronous interrupts. It’s likely that imprecise traps for asynchronous
interrupts should also set vstart, but this issue has been raised with the authors for further
clarification2. The specification also states “There is no support for imprecise traps in the
current standard extensions”, meaning that the other standard RISC-V exceptions do not use
and have not considered imprecise traps.

2.3.4.2 Precise vector traps

Precise vector traps are intended for instructions that can be resumed after handling the
interrupting event. This means the architectural state (i.e. register values) when starting the
trap could be saved and reloaded before continuing execution. Therefore it must look like
instructions were completed in-order, even if the implementation is out-of-order:

• Instructions older than *epc must have completed (committed all results to the architec-
tural state)

• Instructions newer than *epc must not have altered architectural state.
2https://github.com/riscv/riscv-v-spec/issues/799

21

https://github.com/riscv/riscv-v-spec/issues/799

On a precise trap, regardless of what caused it, the vstart CSR must be set to the element
index on which the trap was taken. The save-and-reload expectation then add two constraints
on the trapping instruction’s execution:

• Operations affecting elements preceding vstart must have committed their results

• Operations affecting elements at or following vstart must either

– not have committed results or otherwise affected architectural state

– be idempotent i.e. produce exactly the same result when repeated.

The idempotency option gives implementations a lot of leeway. Some instructions, such
as indexed segment loads (Section 2.5.3), are specifically prohibited from overwriting their
inputs to make them idempotent. If an instruction is idempotent, an implementation is even
allowed to repeat operations on elements preceding vstart. However for memory accesses
the idempotency depends on the memory being accessed. For example, reading or writing a
memory-mapped I/O region may not be idempotent.

Another memory-specific issue is that of demand-paging, where the OS needs to step in
and move virtual memory pages into physical memory for an instruction to use. This use-case
is specifically called out by the specification for precise traps. Usually, this is triggered by some
element of a vector memory access raising a synchronous exception, invoking a precise trap, and
writing the “Machine Trap Value” scalar register with the offending address[9, Section 3.1.21].
vstart must be set to an element at (or before3) the one that demanded the page, because
that element must perform the access after reloading. If an implementation sets vstart to the
offending element, because operations preceding vstart must have completed, any elements
that could potentially trigger demand-pagingmust wait for the preceding elements to complete.

2.3.4.3 Other modes

The RVV spec notes two other possible future trap modes. First is “Selectable precise/imprecise
traps”, where an implementation allows the user to select precise or imprecise traps for e.g.
debugging or performance.

The second mode is “Swappable traps”, where a trap handler could use special instructions
to “save and restore the vector unit microarchitectural state”. The intent seems to be to support
context switching with imprecise traps, which could also require the opaque state (i.e. internal
state not visible to the program) to be saved and restored. Right now, it seems that context
switching always requires a precise trap.

3If the memory region is idempotent, then vstart could any value where all preceding elements had completed.
It could even be zero, in which case all accesses would be retried on resume, as long as it could guarantee forward
progress.

22

2.3.5 Summary

SEW=16

LMUL=4

vstart=2

vl=29

Figure 2.7: Combined examples for RVV vector

Fig. 2.7 shows all of the above features used in a single configuration:

• The instruction was previously interrupted with a precise trap and restarted, so vstart=2

• Elements are 16-bit

• LMUL=4 to try and increase throughput

• Only 29 of the 32 available elements were requested, so vl=29 (3 tail elements)

• Some elements are masked out/inactive (in this case seemingly at random)

• Overall, 21 elements are active

2.4 Previous RVV implementations

Academia and industry have implemented RVV even before v1.0 was released. The scalable
vector model allows great diversity: Johns and Kazmierski integrated aminimal vector processor
into a microcontroller’s scalar pipeline (VLEN=32) [10], Di Mascio et al. used RVV for deep
learning in space[11], and AndesCode, SiFive, and Alibaba have released cores with VLENs up
to 512[12][13][14]. Other academic examples include Ara[15], Arrow[16], RISC-V2[17], and
Vicuna[18], which all decouple the vector processing from the scalar pipeline.

Very recently, more implementations were revealed at RISC-V Week in Paris (May 2022).
Vitruvius[19] uses extremely long vectors VLEN = 16384, is implemented as a decoupled
processor, and is the first RISC-V processor to support the Open Vector Interface (OVI)4 to
communicate with the scalar core. VecProM[20] splits its approach into two, where vectors
beyond a certain length are strip-mined and processed in hardware using a scratch memory,
using OVI to connect multiple heterogeneous vector processors to a scalar core. Both were
produced from the Barcelona Supercomputing Center under the European Processor Initiative.
It seems that adoption of RVV will continue, making it a good choice for adapting to CHERI.

4semidynamics/OpenVectorInterface on Github

23

https://github.com/semidynamics/OpenVectorInterface

2.5 RVV memory instructions

Summarizes [2, Sections 7-9]
RVV defines three broad categories of memory access instructions, which can be further

split into five archetypes with different semantics. This section summarizes each archetype,
their semantics, their assembly mnemonics, and demonstrates how they map memory accesses
to vector elements.

For the most part, memory access instructions handle their operands as described in
Section 2.3. EEW and EMUL are usually derived from the instruction encoding, rather than
reading the vtype CSR. In a few cases the Effective Vector Length EVL is different from the vl
CSR, so for simplicity all instructions are described in terms of EVL.

Segmented accesses

Three of the five archetypes (unit/strided, fault-only-first, and indexed) support segmented
access. This is used for unpacking contiguous structures of 1 ≤ nf ≤ 8 fields and placing each
field in a separate vector. In these instructions, the values of vl, vstart, and the mask register
are interpreted in terms of segments.

Fig. 2.8 demonstrates a common example: the extraction of separate R, G, and B components
from a color. Without segmentation, i.e. n = 1, each consecutive memory address maps to
a consecutive element in a single vector register group. With segmentation, elements are
grouped into segments of n > 1 fields, where each field is mapped to a different vector register
group. This principle extends to LMUL > 1 (Fig. 2.8c).

memory

v-registers

(a) Simple vector element to address mapping

memory

segment
#0

v-registers

nf=3

(b) Element-address mapping for segmented access

v-registers

nf=3

segment
#1

LMUL=2

(c) Example of segment mapping for LMUL > 1

Figure 2.8: Comparison between segmented and unsegmented accesses
For readability, the vector registers are 2x as wide

24

2.5.1 Unit and Strided accesses

Mnemonic Data Address Stride Masked

Unit vlseg<nf>e<eew>.v vd, (rs1), implicit vm
Strided vlsseg<nf>e<eew>.v vd, (rs1), rs2, vm

(a) Instruction

Masked? vm == 0
EEW <eew>
EVL vl
EMUL VLEN * <eew> / EVL
NFIELDS <nf>

(b) Parameters

memory

v-registers

4stride =

4 4 4

(c) Example of a segmented strided access
EEW=8-bits, nf=3, stride=4,EVL=4

Figure 2.9: Segmented Unit/Strided Access Information

This archetype moves active elements of nf vector register groups to/from contiguous segments
of memory, where the start of each segment is separated by stride bytes.

• Unit-stride instructions tightly pack segments, i.e. stride = nf * eew / 8.

• Strided instructions read stride from register rs2.

– stride may be positive, negative, or zero.

• These instructions don’t do anything if vstart >= EVL.

Strided accesses where rs2 is register x0 may perform fewer than EVL memory accesses.
Otherwise, even if stride = 0, implementations must appear to perform all accesses.

Ordering

There are no ordering guarantees, other than those required by precise vector traps (if used).

Exception Handling

If any element within segment i triggers a synchronous exception, vstart is set to i and a
precise or imprecise trap is triggered. Load instructions may overwrite active segments past the
segment index at which the trap is reported, but not past EVL.[2, Section 7.7] Upon entering a
trap, it is implementation-defined how much of the faulting segment’s accesses are performed.

25

2.5.2 Unit fault-only-first loads

Mnemonic Data Address Masked

vlseg<nf>e<eew>ff.v vd, (rs1), vm
(a) Instruction

Masked? vm == 0
EEW <eew>
EVL vl
EMUL VLEN * <eew> / EVL
NFIELDS <nf>

(b) Parameters

Figure 2.10: Unit Fault-only-First Information

This archetype is equivalent to a unit load in all respects but exception handling. If any
access in segment 0 raises an exception5, vl is not modified and the trap is taken as usual. If
any access in any active segment > 0 raises an exception, the trap is not taken, vl is reduced to
the index of the offending segment, and the instruction finishes. If an asynchronous interrupt
is encountered at any point, the trap is taken and vstart is set as usual.

This archetype is intended for “loops with data-dependent exit conditions”, and is commonly
used for string operations. The specification uses it in a strcmp example ([2, Section A.9]).

Similar to plain loads, if an exception is encountered the instruction is allowed to update
segments past the offender (but not past the original vl). If any synchronous exception or
asynchronous interrupt occurs, regardless of the segment index, it is implementation-defined
how much of the faulting segment’s accesses are performed.

5Segment 0 may be masked out, in which case this is impossible.

26

2.5.3 Indexed accesses

Mnemonic Data Address Indices Masked

vl<u|o>xseg<nf>e<eew>.v vd, (rs1), vs2, vm
(a) Instruction

Masked? vm == 0

Element EEW vtype.SEW
Element EMUL vtype.LMUL

Ordered? <u|o>
Index Vector vs2
Index EEW <eew>
Index EMUL VLEN * <eew> / EVL

NFIELDS <nf>
EVL vl

(b) Parameters

memory

indices

v-registers

17 53 8 44

(c) Example of a segmented indexed access
EEW=8-bits, nf=3

Figure 2.11: Segmented Indexed Access Information

This archetype moves elements of nf vector register groups to/from contiguous segments
of memory, where each segment is offset by an index (in bytes) taken from another vector.

• The start of each segment is defined by address + index_vector[i].

• These instructions don’t do anything if vstart >= EVL.

• Indexed segment loads may not overwrite the index vector6.

Ordering

Accesses within each segment are not ordered relative to each other. If the ordered variant
of this instruction is used, then the segments must be accessed in order (i.e. 17, 53, 8, 44 for
Fig. 2.11c). Otherwise, segment ordering is not guaranteed.

Exception Handling

If any element within segment i triggers a synchronous exception, vstart is set to i and a
precise or imprecise trap is triggered. Load instructions may overwrite active segments past the
segment index at which the trap is reported, but not past EVL[2, Section 7.7]. Upon entering a
trap, it is implementation-defined how much of the faulting segment’s accesses are performed.

6This allows restarting after raising an exception partway through a structure

27

2.5.4 Unit whole-register accesses

Mnemonic Data Address

vl<nreg>re<eew>.v vd, (rs1)
(a) Instruction

Masked? False
Registers <nreg>
EEW <eew>
EVL NFIELDS * VLEN / EEW
EMUL 1

(b) Parameters

Figure 2.12: Unit Whole Register Information

This archetype moves the contents of nreg vector registers to/from a contiguous range in
memory. Equivalent to a unit-stride access where EVL equals the total number of elements in
nreg registers.

• nreg must be a power of two.

• These instructions don’t support segmented access.

• These instructions don’t do anything if vstart >= EVL.

Ordering and exception handling are identical to unit-stride accesses (Section 2.5.1).

2.5.5 Unit bytemask accesses

Mnemonic Data Address

vlm.v vd, (rs1)
(a) Instruction

Masked? False
EEW 8-bits
EVL ceil(vl/8)
EMUL 1

(b) Parameters

Figure 2.13: Unit Bytemask Information

This archetype moves the contents of a mask register to/from a contiguous range of memory.
It transfers at least vl bits, one bit for each element that could be used in subsequent vector
instructions. This will always fit in a single vector register (see Section 2.3.3), hence EMUL = 1
in all cases.

• These instructions operate as if the tail-agnostic setting of vtype is true.

• These instructions don’t support segmented access.

• These instructions don’t do anything if vstart >= EVL.

Ordering and exception handling are identical to unit-stride accesses (Section 2.5.1).

28

2.6 CHERI

In CHERI, addresses/pointers are replaced with capabilities: unforgeable tokens that provide
specific kinds of access to an address within a range of memory. The above statement is enough
to understand what capabilities contain7:

• Permission bits, to restrict access

• The cursor, i.e. the address it currently points to

• The bounds, i.e. the range of addresses this capability could point to

A great deal of work has gone into compressing capabilities down into a reasonable size (see [21],
Fig. 2.14), and using the magic of floating-point all of this data has been reduced to just 2x the
architectural register size. For example, on 64-bit RISC-V a standard capability is 128-bits long.
The rest of this dissertation assumes capabilities are 128-bits long for simplicity.

A CHERI implementation has to enforce three security properties about its capabilities[7,
Section 1.2.1]:

• Provenance — Capabilities must always be derived from valid manipulations of other
capabilities.

• Integrity — Corrupted capabilities cannot be dereferenced.

• Monotonicity — Capabilities cannot increase their rights.

Integrity is enforced by tagging registers and memory. Every 128-bit register and aligned
128-bit region of memory has an associated tag bit, which denotes if its data encodes a valid
capability8. If any non-capability data is written to any part of the region the tag bit is zeroed
out. Instructions that perform memory accesses can only do so if the provided capability has a
valid tag bit. As above, significant work has gone into the implementation to reduce the DRAM
overhead of this method (see [22]).

7This is a slight simplification. For the purposes of vector memory accesses the otype of a capability can be
ignored, as any type other than UNSEALED cannot be dereferenced anyway.

8This has the side-effect that capabilities must be 128-bit aligned in memory.

Figure 2.14: 128-bit compressed capability representation — from [3]

29

Provenance and Monotonicity are enforced by all instructions that manipulate capabilities.
If an implementation detects a violation of either property, it will zero out the tag bit and rely
on Integrity enforcement to ensure it is not dereferenced. Some CHERI-enabled architectures,
such as CHERI-RISC-V, also raise a synchronous exception when this occurs.

2.6.1 CHERI-RISC-V ISA

The Cambridge Computer Lab’s TR-951 report[7] describes the latest version of the CHERI
architecture (CHERI ISAv8) and proposes applications to MIPS, x86-64, and RISC-V. CHERI-
RISC-V is a mostly straightforward set of additions to basic RISC-V ISAs. It adds thirty-two
general-purpose capability registers, thirty-two Special Capability Registers (SCRs), and many
new instructions.

The new general-purpose capability registers are each of size CLEN = 2 * XLEN plus a tag
bit. These registers store compressed capabilities. While there is always a logical distinction
between the pre-existing integer registers x0-x31 and the capability registers cx0-cx31, the
architecture may store them in a Split or Merged register file. A Split register file stores
the integer registers separately from capability registers, so programs can manipulate them
independently. A Merged register file stores thirty-two registers of length CLEN, using the
full width for the capability registers, and aliases the integer registers to the bottom XLEN bits.
Under a merged register file, writing to an integer register makes the capability counterpart
invalid, so programs have to be more careful with register usage.

Many of the new SCRs are intended to support the privileged ISA extensions for e.g.
hypervisors or operating systems. The emulator doesn’t use these, so their SCRs are not listed
here, but there are two highly relevant SCRs for all modes: the Program Counter Capability
and the Default Data Capability.

The PCC replaces the program counter and adds more metadata, ensuring instruction
fetches have the same security properties as normal loads and stores. The DDC is used to
sandbox integer addressing modes. CHERI-RISC-V includes new instructions which use integer
addressing, and allows legacy (i.e. integer addressed) code to function on CHERI systems
without recompiling for CHERI-RISC-V. These instructions all use integer addresses relative to
the DDC, and the DDC controls the permissions those instructions have.

2.6.2 Instruction changes

TR-951[7, Chapter 8] specifies a suite of new instructions, as well as a set of modifications to pre-
existing instructions. Many of the new instructions are unrelated to pre-existing instructions,
and implement capability-specific operations like accessing fields of capability registers. The
most relevant new instructions for our case are the various loads/stores.

30

Name Direction Data type Address calculation

L[BHWD][U].CAP Load Integer via capability register
L[BHWD][U].DDC Load Integer via DDC
LC.CAP Load Capability via capability register
LC.DDC Load Capability via DDC
S[BHWD].CAP Store Integer via capability register
S[BHWD].DDC Store Integer via DDC
SC.CAP Store Capability via capability register
SC.DDC Store Capability via DDC

Table 2.1: New CHERI load/store instructions

Name Direction Data type Address calculation
(Capability/Integer mode)

[C]LC1 Load Capability via capability/DDC
[C]SC2 Store Capability via capability/DDC

L[BWHD][U] Load Integer via capability/DDC
S[BWHD] Store Integer via capability/DDC
FL[WDQ] Load Float via capability/DDC
FS[WDQ] Store Float via capability/DDC
LR Load Integer via capability/DDC
SC Store Integer via capability/DDC
AMO3 — Integer via capability/DDC
1 Replaces RV128 LQ 2 Replaces RV128 SQ 3 All atomic memory operations

Table 2.2: Preexisting RISC-V load/store instructions modified by CHERI-RISC-V

CHERI-RISC-V adds new instructions for loading integer and capability data, either via
capabilities or using integer addressing through the DDC (Table 2.1). These instructions are
intended for hybrid-capability code (see Section 2.6.4, [7, p151]), so are more limited and don’t
support immediate offsets. The behaviour of basic RISC-V load/store opcodes changes to either
use capabilities as memory references or use integer addressing via the DDC, depending on
the encoding mode. If any instruction tries to dereference an invalid capability, it raises a
synchronous exception.

2.6.3 Capability and Integer encoding mode

CHERI-RISC-V specifies two encoding modes, selected using a flag in the PCC flags field.
Capability mode modifies the behaviour of pre-existing instructions to take address operands
as capabilities. This makes the basic load/store instruction behaviour exactly equivalent to
newly introduced counterparts: e.g. L[BWHD][U] == L[BWHD][U].CAP. The DDC may still
be used in this mode via the new instructions e.g. S[BWHD].DDC.

31

Integer mode seeks to emulate a standard CHERI-less RISC-V architecture as much as
possible. All pre-existing RISC-V memory access instructions take address operands as in-
tegers, which are dereferenced relative to the DDC9. This makes the basic load/store instruc-
tion behaviour exactly equivalent to newly introduced counterparts: e.g. L[BWHD][U] ==
L[BWHD][U].DDC. The new instructions may still be used to dereference and inspect capability
registers, but all other instructions access registers in an integer context i.e. ignoring the upper
bits and tag from merged register files.

2.6.4 Pure-capability and Hybrid compilation modes

CHERI-Clang10, the main CHERI-enabled compiler, supports two ways to compile CHERI-RISC-
V which map to the different encoding modes.

Pure-capability mode treats all pointers as capabilities, and emits pre-existing RISC-V
instructions that expect to be run in capability mode11.

Hybrid mode treats pointers as integer addresses, dereferenced relative to the DDC, unless
they are annotated with __capability. This mode emits pre-existing RISC-V instructions that
take integer operands, and uses capabilities through the new instructions. All capabilities in
hybrid mode are created manually by the program by copying and shrinking the DDC.

Hybrid mode allows programs to be gradually ported to CHERI, making it very easy to
adopt on legacy/large codebases. Any extensions to the model (e.g. CHERI-RVV) should try
and retain this property.

2.6.5 Capability relocations

Summarizes [8, Section 4.4, Appendix C]
Binary applications compiled in pure-capability mode require some “global” capabilities to

exist at startup, e.g. the capability which points to the main() function. It would be a security
risk to synthesize these capabilities from thin air, or to allow the binary file itself to contain tag
bits.

Instead, CHERI ELF binaries contain a set of requested “relocations” (the __cap_relocs
section) which instruct the runtime environment to create capabilities with specific permissions
and bounds in specific places. This process uses the normal CHERI capability instructions, so
any invalid requests will cause a program crash, maintaining security. Further complexity is
introduced with dynamic linking, and in the future these relocations may change format, both
described in TR-949[8], but the above description is sufficient to understand the rest of this
paper.

9Of course, the DDC must be valid when it is used in this mode, and all bounds checks etc. must still pass.
10https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-llvm.html
11This wasn’t derived from documentation, but instead from manual inspection of emitted code.

32

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-llvm.html

CHAPTER 3

Hardware emulation investigation

In order to experiment with integrating CHERI and RVV, we implemented a RISC-V emulator
in the Rust programming language named riscv-v-lite. The emulator can partially emulate
four unprivileged1 RISC-V ISAs (Table 3.1), and was also used as the base for capabilities-
in-vectors research (Chapter 5). This chapter explores the development of the emulator, the
implementation of CHERI support (including supplementary libraries), the addition of vector
support, and the conclusions drawn about CHERI-RVV.

Architecture Extensions

32-bit rv32imv Multiply, CSR, Vector1
64-bit rv64imv Multiply, CSR, Vector1
64-bit rv64imvxcheri Multiply, CSR, Vector1, CHERI
64-bit rv64imvxcheri-int Multiply, CSR, Vector1, CHERI (Integer)

1 Floating-point parts of the vector extension are not supported.

Table 3.1: riscv-v-lite supported architectures

3.1 Developing the emulator

Each architecture is simulated in the same way. A Processor struct holds the register file
and memory, and a separate ProcessorModules struct holds the ISA modules the architecture
can use. Each ISA module uses a “connector” struct to manipulate data in the Processor.
For example, the RV64 Integer ISA’s connector contains the current PC, a virtual reference
to a register file, and a virtual reference to memory. This allows different Processor structs
(e.g. a normal RV64 and a CHERI-enabled RV64) to reuse the same ISA modules despite using
different register file implementations.

1i.e. entirely bare-metal without privilege levels for OSs or hypervisors.

33

Each Processor implements a single stage pipeline. Instructions are fetched, decoded
with a common decoder function2, and executed. The processor asks each ISA module in turn
if it wants to handle the instruction, and uses the first module to say yes. If the ISA module
returns a new PC value it is immediately applied, otherwise it is automatically incremented.
This structure easily represents basic RISC-V architectures, and can scale up to support many
different new modules.

3.1.1 Emulating CHERI

Manipulating CHERI capabilities securely and correctly is a must for any CHERI-enabled
emulator. Capability encoding logic is not trivial by any means, so the cheri-compressed-
cap C library was re-used rather than implementing it from scratch. Rust has generally decent
interoperability with C, but some of the particulars of this library caused issues.

3.1.1.1 rust-cheri-compressed-cap

cheri-compressed-cap provides two versions of the library by default, for 64-bit and 128-
bit capabilities, which are generated from a common source through extensive use of the
preprocessor. Each variant defines a set of preprocessor macros (e.g. the widths of various
fields) before including two common header files cheri_compressed_cap_macros.h and
cheri_compressed_cap_common.h. The latter then defines every relevant structure or func-
tion based on those preprocessor macros. For example, a function compute_base_top is
generated twice, once as cc64_decompress_mem returning cc64_cap_t and another time as
cc128_decompress_mem returning cc128_cap_t. Elegantly capturing both sets was the main
challenge for the Rust wrapper.

One of Rust’s core language elements is the Trait - a set of functions and “associated types”
that can be implemented for any type. This gives a simple way to define a consistent interface:
define a trait CompressedCapabilitywith all of the functions from cheri_compressed_cap_common.h,
and implement it for two empty structures Cc64 and Cc128. In the future, this would allow
the Morello versions of capabilities to be added easily. A struct CcxCap<T> is also defined
which uses specific types for addresses and lengths pulled from a CompressedCapability.
For example, the 64-bit capability structure holds a 32-bit address, and the 128-bit capability a
64-bit address.

128-bit capabilities can cover a 64-bit address range, and thus can have a length of 264.
Storing this length requires 65-bits, so all math in cheri_compressed_cap_common.h uses
128-bit length values. C doesn’t have any standardized 128-bit types, but GCC and LLVM
provide so-called “extension types” which are used instead. Although the x86-64 ABI does
specify how 128-bit values should be stored and passed as arguments[23], these rules do not

2The decoder, and therefore all emulated processors, doesn’t support RISC-V Compressed instructions.

34

seem consistently applied3. This causes great pain to anyone who needs to pass them across a
language boundary.

Rust explicitly warns against passing 128-bit values across language boundaries, and the
Clang User’s Manual even states that passing i128 by value is incompatible with the Microsoft
x64 calling convention4. This could be resolved through careful examination: for example, on
LLVM 128-bit values are passed to functions in two 64-bit registers5, which could be replicated
in Rust by passing two 64-bit values. For convenience, we instead rely on the Rust and Clang
compilers using compatible LLVM versions and having identical 128-bit semantics.

The CHERI-RISC-V documentation contains formal specifications of all the new CHERI
instructions, expressed in the Sail architecture definition language6. These definitions are used
in the CHERI-RISC-V formal model7, and require a few helper functions (see [7, Chapter 8.2]).
To make it easier to port the formal definitions directly into the emulator the rust-cheri-
compressed-cap library also defines those helper functions.

The above work is available online8, and includes documentation for all C functions (which
is not documented in the main repository). That documentation is also available online9 and
partially reproduced in Appendix A.

3.1.1.2 Integrating into the emulator

Integrating capabilities into the emulator was relatively simple thanks to the modular emulator
structure. A capability-addressed memory type was created, which wraps a simple integer-
addressed memory in logic which performs the relevant capability checks. For integer encoding
mode, a further integer-addressed memory type was created where integer addresses are
bundled with the DDC before passing through to a capability-addressed memory (see Fig. 3.1).
Similarly, a merged capability register file type was created that exposed integer-mode and
capability-mode accesses. This layered approach meant code for basic RV64I operations did
not need to be modified to handle CHERI at all — simply passing the integer-mode memory
and register file would perform all relevant checks.

Integrating capability instructions was also simple. Two new ISA modules were created:
XCheri64 for the new CHERI instructions, and Rv64imCapabilityMode to override the beha-
viour of legacy instructions in capability-encoding-mode (see Fig. 3.2). The actual Processor
structure was left mostly unchanged. Integer addresses were changed to capabilities through-
out, memory and register file types were changed as described above, and the PCC/DDC were
added.

3See https://godbolt.org/z/qj43jssr6 for an example.
4clang/docs/UsersManual.rst:3384 in llvm/llvm-project (release/13.x) on GitHub
5clang/lib/CodeGen/TargetInfo.cpp:2811 in llvm/llvm-project (release/13.x) on GitHub
6rems-project/sail on Github
7CTSRD-CHERI/sail-cheri-riscv on Github
8theturboturnip/cheri-compressed-cap on Github
9https://theturboturnip.github.io/files/doc/rust_cheri_compressed_cap/

35

https://godbolt.org/z/qj43jssr6
https://github.com/llvm/llvm-project/blob/release/13.x/clang/docs/UsersManual.rst#x86
https://github.com/llvm/llvm-project/blob/75e33f71c2dae584b13a7d1186ae0a038ba98838/clang/lib/CodeGen/TargetInfo.cpp#L2811
https://github.com/rems-project/sail
https://github.com/CTSRD-CHERI/sail-cheri-riscv
https://github.com/theturboturnip/cheri-compressed-cap
https://theturboturnip.github.io/files/doc/rust_cheri_compressed_cap/

DDC-relative

Memory

Capability

Memory

Integer

Memory

int

+DDC

+checks
-metadata

cap

int

integer address

Figure 3.1: Emulator memory structure

if new CHERI instruction then
handle with XCheri64

else if basic rv64 instruction then
if in capability encoding mode then

handle with Rv64imCapabilityMode
else

wrap memory with DDC-relative
handle with Rv64im

end if
else if vector instruction then

if in capability encoding mode then
handle with vector unit

else
wrap memory in DDC-relative
handle with vector unit

end if
end if

Figure 3.2: Example algorithm for emulating
rv64imvxcheri

The capability model presented by the C/Rust library has one flaw. Each CcxCap instance
stores capability metadata (e.g. the uncompressed bounds) as well as the compressed encoding.
This makes it potentially error-prone to represent untagged integer data with CcxCap, as the
compressed and uncompressed data may not be kept in sync and cause inconsistencies later
down the line. CcxCap also provides a simple interface to set the tag bit, without checking
whether that is valid. The emulator introduced the SafeTaggedCap to resolve this: a sum type
which represents either a CcxCap with the tag bit set, or raw data with the tag bit unset. This
adds type safety, as the Rust compiler forces every usage of SafeTaggedCap to consider both
options, preventing raw data from being interpreted as a capability by accident and enforcing
Provenance.

The final hurdle was the capability relocations outlined in Section 2.6.5. Because we’re
emulating a bare-metal platform, there is no operating system to do this step for us. A bare-
metal C function has been written to perform the relocations10, which could be compiled into
the emulated program. We decided it would be quicker to implement this in the simulator, but
in the future we should be able to perform the relocations entirely in bare-metal C.

3.1.2 Emulating vectors

Vector instructions are executed by a Vector ISA module, which stores all registers and other
state. VLEN is hardcoded as 128-bits, chosen because it’s the largest integer primitive provided
by Rust that’s large enough to hold a capability. ELEN is also 128-bits, which isn’t supported
by the specification, but is required for capabilities-in-vectors (Chapter 5). Scaling VLEN and

10src/crt_init_globals.c in CTSRD-CHERI/device-model on GitHub

36

https://github.com/CTSRD-CHERI/device-model/blob/88e5e8e744d57b88b0dbb8e3456ee0e69afc143b/src/crt_init_globals.c

31 29 28 27 26 25 24 20 19 15 14 12 11 7 6 0

nf mew mop vm umop/rs2/vs2 rs1 width vd opcode

Table 3.2: Relevant parameters of floating-point and vector load/store encoding

ELEN any higher would require the creation and integration of new types that were more than
128-bits long.

To support both CHERI and non-CHERI execution pointers are separated into an address
and a provenance11. The vector unit retrieves an address + provenance pair from the base register,
generates a stream of addresses to access, then rejoins each address with the provenance to
access memory. When using capabilities, provenance is defined in terms of the base register
e.g. “the provenance is provided by capability register X”, or defined by the DDC in integer
mode12. On non-CHERI platforms the vector unit doesn’t check provenance.

Arithmetic and configuration instructions are generally simple to implement, so aren’t
covered here. The emulator splits vectormemory accesses into three phases: decoding, checking,
and execution. A separate decoding stage may technically not be necessary in hardware
(especially the parts checking for errors and reserved instruction encodings, which a hardware
platform could simply assume won’t happen), but it allows each memory access instruction to
be classified into one of the five archetypes outlined in Section 2.5. It is then easy to define the
checking and execution phases separately for each archetype, as the hardware would need to
do.

3.1.2.1 Decoding phase

Decoding is split into two steps: finding the encoded nf and element widths, then interpreting
them based on the encoded archetype. Vector memory accesses reuse instruction encodings
from the F extension’s floating-point load/store instructions, which encode an “element width”
in the mew and width bits (see Table 3.2). The vector extension adds four extra width values
which imply the access is vectorized (see Table E.2). If any of these values are found, the
instruction is interpreted as a vector access and nf is extracted.

Once the generic parameters are extracted, the addressing method is determined from mop
(Unit, Strided, Indexed-Ordered, or Indexed-Unordered). If a unit access is selected, the second
argument field umop selects a unit-stride archetype (normal access, fault-only-first, whole
register, or bytemask). Extra archetype-specific calculations are performed (e.g. computing
EVL = ceil(vl/8) for bytemask accesses), and the relevant information is returned as a
DecodedMemOp enum.

11The “original allocation the pointer is derived from”[24], or in CHERI terms the bounds within which the
pointer is valid.

12See Section 3.1.2.4 for the reasoning behind this decision.

37

3.1.2.2 Fast-path checking phase

The initial motivation for this project was investigating the impact of capability checks on
performance. Rather than check each element’s access individually, we determine a set of
“fast-path” checks which count as checks for multiple elements at once. In the emulator, this is
done by computing the “tight bounds” for each access, i.e. the exact range of bytes that will be
accessed, and doing a single capability check with that bounds. Section 3.2 describes methods
for calculating the “tight bounds” for each access type, and ways that architectural complexity
can be traded off to calculate wider bounds.

If the tight bounds don’t pass the capability check, the emulator raises an imprecise trap
and stops immediately. In the case of fault-only-first loads, where synchronous exceptions
(e.g. capability checks) are explicitly handled, the access continues regardless and elements are
checked individually. This is also the expected behaviour if a capability check for wider bounds
fails. The emulator deviates from the spec in that vstart is not set when the tight bounds
check fails, as it does not know exactly which element would have triggered the exception. As
noted in Section 3.2, a fully compliant machine must check each access to find vstart in these
cases.

3.1.2.3 Execution phase

If the fast-path check deems it appropriate, the emulator continues execution of the instruction
in two phases. First, the mapping of vector elements to accessed memory addresses is found.
The code for this step is independent of the access direction, and an effective description of how
each type of access works. It can be found in Appendix B.4. The previously computed tight
bounds are sanity-checked against these accesses, and the accesses are actually performed.

3.1.2.4 Integer vs. Capability encoding mode

As noted in Section 2.6.3, CHERI-RISC-V defines two execution modes that the program
can switch between. In Integer mode “address operands to existing RISC-V load and store
opcodes contain integer addresses” which are implicitly dereferenced relative to the default
data capability, and in Capability mode those opcodes are modified to use capability operands.

Integer mode was included in the interests of maintaining compatibility with legacy code
that hasn’t been adapted to capabilities. As similar vector code may also exist, CHERI-RVV
treats vector memory access instructions as “existing RISC-V load and store opcodes” and
requires that they respect integer/capability mode.

We do not define newmode-agnostic instructions, like S[BHWD][U].CAP and S[BHWD].DDC
(Section 2.6.2), which means vector programs cannot mix capability and integer addressing
without changing encoding modes. This may make incremental adoption more difficult, and in
the future we should examine existing vanilla RVV programs to determine if it’s worth adding

38

those instructions.

3.2 Fast-path calculations

A fast-path check can be performed over various sets of elements. The emulator chooses to
perform a single fast-path check for each vector access, calculating the tight bounds before
starting the actual access, but in hardware this may introduce prohibitive latency. This sec-
tion describes the general principles surrounding fast-paths for CHERI-RVV, notes the areas
where whole-access fast-paths are difficult to calculate, and describes possible approaches for
hardware.

3.2.1 Possible fast-path outcomes

In some cases, a failed address range check may not mean the access fails. The obvious case is
fault-only-first loads, where capability exceptions may be handled without triggering a trap.
Implementations may also choose to calculate wider bounds than accessed for the sake of
simplicity, or even forego a fast-path check altogether. Thus, a fast-path check can have four
outcomes depending on the circumstances.

A Successmeans no per-access capability checks are required. Likely-Failure and Unchecked
results mean each access must be checked, to see if any of them actually raise an exception.
Unfortunately, accesses still need to be checked under Failure, because both precise and
imprecise traps need to report the offending element in vstart13.

Because all archetypes may have Failure or Likely-Failure outcomes, hardware must provide
a fallback slow-path for each archetype which checks/performs each access in turn. In theory,
a CHERI-RVV specification could relax the vstart requirement for imprecise traps, and state
that all capability exceptions trigger imprecise traps. In this case, only archetypes that produce
Likely-Failure outcomes need the slow-path. However, it is likely that for complexity reasons
all masked accesses will use wide ranges, thus producing Likely-Failure outcomes and requiring
slow-paths for all archetypes anyway. Because the Likely-Failure and Failure cases require the
slow-path anyway, computing the fast-path can only be worthwhile if Success is the common
case.

3.2.2 Whole-access fast-paths

It is technically possible to calculate a fast-path for the entirety of an access (see Appendix C),
but for some situations it may be equally/more expensive than checking each access. For

13In very particular cases, e.g. unmasked unit-strided accesses where nf = 1, the capability bounds could
be used to calculate what the offending element must have been. We believe this is too niche of a use case to
investigate further, particularly given the complexity of the resulting hardware.

39

Success All accesses will succeed

Failure At least one access will
raise an exception

Likely-Failure At least one access may
or Unchecked raise an exception

(a) Possible fast-path outcomes

if range is within capability then
Success

else if range is wide then
Likely-Failure

else if fault-only-first then
Likely-Failure

else
Failure

end if
(b) Algorithm

Figure 3.3: Fast-path outcomes

example, the bounds for masked accesses depend on finding the minimum and maximum active
indices, which in hardware may require a linear scan. Indexed accesses require finding the
minimum/maximum offset values, which likely requires an expensive parallel reduction over
all/some elements. In these cases hardware implementations could defer to the slow-path on
all masked/indexed accesses, or for masked accesses use the wider, unmasked bounds and
generate Likely-Failure outcomes. Unit and strided accesses are much easier to handle.

Arbitrarily strided accesses (which may have positive, negative, or zero-valued strides)
are relatively simple to calculate. After calculating the segment width (i.e. number of fields ∗
element width) the full bounds just depends on the sign of the stride (Eq. (3.2.1)). Unit-stride
accesses simplify this further, because the stride is equal to the segment width and guaranteed
to be positive (Eq. (3.2.2)).

base +

[vstart * stride, (evl - 1) * stride + nf * eew) stride ≥ 0
[(evl - 1) * stride, vstart * stride + nf * eew) stride < 0

(3.2.1)

Tight bounds for strided access

base + [vstart * nf * eew, evl * nf * eew) (3.2.2)

Tight bounds for unit-stride access

Ultimately, the potential up-front latency seemed like a dealbreaker for this approach. We
turned our attention to fast-pathing smaller groups of elements.

3.2.3 m-element known-range fast-paths

A hardware implementation of a vector unit may be able to issue m requests within a set range
in parallel. For example, elements in the same cache line may be accessible all at once. In
these cases, checking elements individually would either require m parallel bounds checks, m

40

checks’ worth of latency, or something in-between. In this subsection we consider a fast-path
check for m elements.

Capability checks can be split into two steps: address-agnostic (e.g. permissions checks,
bounds decoding) and address-dependent (e.g. bounds checks). Address-agnostic steps can
be performed before any bounds checking, and should add minimal start-up latency (bounds
decoding must complete before the checks anyway, and permission checks can be performed
in parallel). Once the bounds are decoded the actual checks consist of minimal logic14, so a
fast-path must have very minimal logic to compete.

We first consider unit and strided accesses, and note two approaches. First, one could
amortize the checking logic cost over multiple sets of m elements by operating in terms of
cache lines. Iterating through all accessed cache lines, and then iterating over the elements
inside, allows the fast-path to hardcode the bounds width and do one check for multiple
cycles of work (if cache lines contain more than m elements). Cache-line-aligned allocations
benefit here, as all fast-path checks will be in-bounds i.e. Successful, but misaligned data is
guaranteed to create at least one Likely-Failure outcome per access (requiring a slow-path
check). Calculating tight bounds for the m accessed elements per cycle could address this.

For unit and strided accesses, the bounds occupied by m elements is straightforward to
calculate, as the addresses can be generated in order. The minimum and maximum can then be
picked easily to generate tight bounds. An m-way multiplexer is still required for taking the
minimum and maximum, because evl and vstart may not be m-aligned. If m is small, this
also neatly extends to handle masked/inactive elements. This may use less logic overall than m

parallel bounds checks, depending on the hardware platform15, but it definitely uses more logic
than the cache-line approach. Clearly, there’s a trade-off to be made.

Indexed fast-paths are more complicated, because the addresses are unsorted. The two
approaches above have different advantages for indexed accesses. If the offsets/indices are
spatially close, just not sorted, cache line checks may efficiently cover all elements. An
implementation could potentially cache the results, and refer back for each access, instead of
trying to iterate through cache lines in order. Otherwise a m-way parallel reduction could
be performed to find the min and max, but that would likely take up more logic than m

comparisons. This may be a moot point depending on the cache implementation though - if the
m accesses per cycle must be in the same cache line, and the addresses are spread out, you’re
limited to one access and therefore one check per cycle regardless.

In summary, there are fast-path checks that consume less logic than m parallel checks in
certain circumstances. Even though a slow-path is always necessary, it can be implemented in
a slow way (e.g. doing one check per cycle) to save on logic. Particularly if other parts of the
system rely on constraining the addresses accessed in each cycle, a fast-path check can take

14Likely requires two arithmetic operations per element, for checking against the top and bottom bounds.
15e.g. on FPGAs multiplexers can be relatively cheap.

41

advantage of those constraints.

3.3 Going beyond the emulator

The emulator is a single example of a conformant CHERI-RVV implementation, and does not
exercise every part of the specification. Four properties stand out:

• The emulator assumes all element accesses are naturally aligned, but the spec allows
misaligned accesses.

• The emulator doesn’t consider multiple hardware threads, essentially assuming all ac-
cesses are atomic.

• Segments/elements are always accessed in order, despite the spec not enforcing ordering

• Imprecise traps are used for all exceptions - precise trap behaviour is not explored.

This section notes how relaxed access ordering and precise exceptions may affect the hardware
in ways not previously explored.

3.3.1 Misaligned accesses

Implementations are allowed to handle vector accesses that are not aligned to the size of the
element. This support is independent of misaligned scalar access support, so if e.g. misaligned
64-bit scalar accesses are allowed, misaligned vector accesses of 64-bit elements do not have to
be allowed.

Changing the emulator to allow misaligned accesses of integer data would not have any
impact on CHERI correctness. Capability loads/stores must be aligned to CLEN[7, Section 3.5.2],
and an implementation cannot change this. Writing misaligned integer values across a CLEN
boundary would need to make sure to zero the tag bit on both regions, but this applies to scalar
implementations as much as vector ones. Alignment only impacts CHERI-RVV to the extent
that it impacts capabilities-in-vectors (Section 5.2).

3.3.2 Atomicity of accesses/General memory model

Vector memory instructions are specified to follow the RISC-V Weak Memory Ordering
model[2]16, although this model hasn’t been fully explained in terms of vectors yet. RVWMO
defines a global order of “memory operations”: atomic operations that are either loads, stores,
or both[6, Chapter 14]. The RVWMO spec assumes all memory instructions create exactly one

16Behaviour under the Total Store Ordering extension hasn’t been defined.

42

memory operation but calls out that once the vector model is formalized, vector accesses may
be defined to create multiple operations.

The RVV spec states “vector misalignedmemory accesses follow the same rules for atomicity
as scalar misaligned memory accesses”, i.e. that misaligned accesses may be decomposed into
multiple memory operations of any granularity17. This is the only mention of atomicity in that
document.

Again, atomicity of integer data doesn’t really impact the fusion of CHERI and RVV, as
long as tag bits are correctly zeroed on all integer writes. However, it does impact capabilities-
in-vectors (Section 5.2).

3.3.3 Relaxed access ordering and precise traps

Ordering is only enforced insofar as it is observable. The only instructions that are forced to
perform their accesses in order are indexed-ordered accesses, which can be used to write to
e.g. I/O regions where order matters, and instructions that trigger precise traps. Precise traps
require vstart to be set to a value such that all elements before vstart have completed their
accesses, and all accesses on/after vstart have not completed or are idempotent.

If a vector memory access instruction is 1. not indexed-ordered and 2. guaranteed not to
trigger a precise trap18 then it may execute out of order. This does not affect CHERI-RVV in
any way.

3.4 Testing and evaluation

We tested the emulator using a set of test programs described in Sections 4.3 and 5.2, and found
that all instructions were implemented correctly.

17e.g. each byte could be written in a separate access.
18Even instructions that would trigger precise traps but are guaranteed not to throw an exception or respond to

asynchronous interrupt may execute out of order.

43

Hypothesis H-1 - Feasibility

It is possible to use CHERI capabilities as memory references in all vector instructions.

This is true. All vector memory access instructions index the scalar general-purpose register
file to read the base address, and CHERI-RVV implementations can simply use this index for the
scalar capability register file instead. This can be considered through the lens of adding CHERI
to any RISC-V processor, and in particular adding Capability mode to adjust the behaviour of
legacy instructions. RVV instructions can have their behaviour adjusted in exactly the same
way as the scalar memory access instructions.

That approach then scales to other base architectures that have CHERI variants. For
example, Morello’s scalar Arm instructions were modified to use CHERI capabilities as memory
references[25, Section 1.3], so one may simply try to apply those modifications to e.g. Arm
SVE instructions. This only works where Arm SVE accesses memory references in the same
way as scalar Arm instructions did i.e. through a scalar register file.

Arm SVE has some addressing modes like u64base, which uses a vector as a set of 64-bit
integer addresses[26]. This has more complications, because simply dereferencing integer
addresses without a capability is insecure. Would a CHERI version convert this mode to use
capabilities-in-vectors, breaking compatibility with legacy code that expects integer references?
Another option would be to only enable this instruction in Integer mode, and dereference
relative to the DDC. It’s possible to port this to CHERI, but requires further investigation and
thought.

Hypothesis H-2 - Fast-path checks

The capability bounds checks for vector elements within a known range (e.g. a cache
line) can be performed in a single check, amortizing the cost.

This is also true, at least for Successful accesses. Because the RVV spec requires that the
faulting element is always recorded[2, Section 17], a Failure due to a capability violation
requires elements to be checked individually. CHERI-RVV could change the specification so
the faulting element doesn’t need to be calculated, which would make Failures faster, but that
still requires Likely-Failures to take the slow-path.

There are many ways to combine the checks for a set of vector elements, which can take
advantage of the range constraints. For example, a unit-stride access could a hierarchy of
checks: cache-line checks until a Likely-Failure, then tight m-element bounds until a Likely-
Failure, then the slow-path. However, the choice of fast-path checks is inherently a trade-off
between latency, area, energy usage, and more. Picking the right one for the job is highly
dependent on the existing implementation, and indeed an implementation may decide that
parallel per-element checks is better than a fast-path.

44

CHAPTER 4

The CHERI-RVV software stack

This chapter explores the current state of the CHERI-RVV software stack: mainstream compiler
support for vanilla RVV (Section 4.1) and the modifications required to bring support to CHERI-
Clang (Section 4.2). The software hypotheses are tested with this knowledge (Section 4.3), and
we recommend a set of changes to bring CHERI-Clang support up to par (Section 4.4).

4.1 Compiling vector code

Modern compilers provide many ways to generate vectorized code. While this support is very
advanced for well established vector models, like x86-64 AVX, newer vector models like RVV
don’t have as many options. It can even be difficult to get the compiler to generate any vector
instructions at all. This section examines support across the Clang and GCC compilers for
various vectorization methods on RVV.

4.1.1 Available compilers

Compiler support for RVV varies. On Clang 13 and other LLVM-13-based compilers, version
0.1(?1) of the vector specification is supported as an experimental extension. Clang/LLVM 14
and up support RVV v1.0.

GCC is an interesting case — there is a version based on RISC-V GCC 10.1 that partially
supports RVV (see Appendix D.3), but it was left untouched for a year and deleted as of 17th
May 2022. GCC RVV support has also been deprioritized in favour of LLVM2. See Appendix D.5
for more information on finding and building this version, and Table D.1 for the required
command-line arguments to enable RVV.

1It is difficult to verify the actual corresponding version, because there is no readily available specification for
v0.1, and the extension supports instructions only present from v0.8 such as whole register accesses.

2https://github.com/riscv-collab/riscv-gcc/issues/320

45

https://github.com/riscv-collab/riscv-gcc/issues/320

4.1.2 Automatic vectorization

Compilers with auto-vectorization can automatically create vectorized code from a scalar
program. For example, a scalar loop over an array that increments each element could be
converted to a vectorized loop that increments multiple elements at once. Clang and GCC
support auto-vectorization in Arm SVE, explored further in Section 4.1.5, but don’t yet support
it for RVV. Arm SVE and RVV are quite similar, so there shouldn’t be anything blocking
auto-vectorization for RVV, it just requires engineering effort.

4.1.3 Vector intrinsics

“Intrinsics” are functions defined by the compiler that can invoke low-level functionality and
instructions directly for a specific architecture. When automatic vectorization is not available,
intrinsics are the next best thing — they aren’t portable across different ISAs, but present a
familiar high-level interface (function calls) that gives fine-grained control over instructions.
The compiler then handles low-level decisions like register allocation under the hood, and
sometimes may provide extra functionality for ease of use.

RVV has a comprehensive set of vector intrinsics[27]. With these, the general strip-mining
loop is easy to construct:

1. Use a vsetvl intrinsic to get the vector length for this iteration.

2. Allocate vector registers by declaring variables with vector types (e.g. vuint32m8_t
represents 8 registers worth of 32-bit unsigned integers).

3. Pass the vector length to the computation/memory intrinsics, which operate on the
vector variables.

Appendix B.1 contains an example.

4.1.4 Inline assembly

If a compiler doesn’t supply complete intrinsics, or if the programmer desires even more control,
inline assembly may be used. The programmer gives a string of handwritten assembly code to
the compiler, which is parsed and directly inserted into the output. The compiler still has to
understand the instruction, but it doesn’t need intrinsics to be present (or functional3).

Inline assembly can interact with C code and variables through a template syntax. The
programmer inserts a placeholder in the assembly code with a corresponding expression, noting
how the expression is stored using a “constraint”. For our purposes, constraints enforce that a
value is either in a register or in memory.

3As described later, CHERI-Clang crashes when intrinsics are used, so we use inline assembly instead.

46

Using the constraint, the compiler determines how the expression’s value is stored, and
inserts a reference to it in the assembly string. Because this is done before the assembly string
is parsed, and isn’t immediately type-checked against the assembly instruction, it can lead to
some difficult errors.

Clang and GCC support inline assembly for RVV quite well, and even allows the intrinsic
vector types to be referenced by assembly templates (thus making the compiler do register
allocation instead of the programmer). The only caveat is that memory constraints are not
supported by RVV memory accesses. None of the vector memory access instructions support
address offsets, unlike their scalar counterparts. Clang always treats the memory constraint
as an offset access, even when that offset is zero, so it adds an offset to the assembly string
(Fig. 4.1c) making it invalid. To get around this, one must use the pointer itself with a register
constraint (Fig. 4.1d).

int* ptr; int val; vint32m1_t vec_val;

(a) Preamble

// "ld a0, 0(a0)" - valid
asm ("ld %0, %1"

: "=r"(val)
: "m"(*ptr));

(b) Load scalar from memory

// "vle32.v v8, 0(a0)" - invalid
asm ("vle32.v %0, %1"

: "=vr"(vec_val)
: "m"(*ptr));

(c) Failed attempt to load vector from memory

// "vle32.v v8, (a0)" - valid
asm ("vle32.v %0, (%1)"

: "=vr"(vec_val)
: "r"(ptr));

(d) Load vector from pointer in register

Figure 4.1: Inline assembly examples
https://godbolt.org/z/rW9orr66a

Broadly speaking, inline assembly supports more RVV instructions than intrinsics do. It
is used extensively in the testbench code for the evaluation (Section 4.3) alongside intrinsics
where possible.

47

https://godbolt.org/z/rW9orr66a

4.1.5 RVV vs. Arm SVE

Arm SVE uses a similar model to RVV, where the vector length may scale between 128 and
20484 and the instructions are designed to be totally agnostic across different platforms[1]. Arm
have released a C language extension to support SVE development ([28]), supported by the
Arm Compiler for Embedded5, Clang, and GCC. They support all of the previously examined
vectorization types.

Auto-vectorization is supported, and the main focus of the user guide ([26]) is helping the
compiler decide whether to auto-vectorize. Intrinsics are also supported, and seem to cover all
of the SVE instructions, but take a slightly different approach to RVV. Arm SVE intrinsics do
not directly map to available instructions, but aim to “provide a regular interface and leave
the compiler to pick the best mapping to SVE instructions”, while RVV intrinsics (at least for
memory) tend to map 1:1 to existing instructions. Arm’s approach gives more flexibility for
future extensions, as the same intrinsics could be compiled to new instructions with newer
compilers.

Arm SVE also supports inline assembly, but the experience is noticeably worse than for
RVV. The two standout issues are a lack of register allocation and the use of condition code
flags for branching. Unlike RVV, the intrinsic types for vector values cannot be referenced in
inline assembly[1], so all vector registers must be allocated and tracked by the programmer.
Arm SVE’s equivalent of vsetvl, the while family[28], do not return the number of updated
elements, and instead set the condition flags based on howmany elements are updated. Because
there is no way to branch based on the condition flags in C, the programmer must manually
insert a label for the top of the loop, and a branch to that label, which is more error prone than
the RVV method. See Appendix B.3 for examples of Arm SVE code with auto-vectorization,
intrinsics, and inline ASM.

4RVV slightly differs here, as it allows VLEN smaller than 128.
5https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded

48

https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded

// "vle32.v v8, (ca0)" - valid
asm ("vle32.v %0, (%1)"

: "=vr"(vec_val)
: "C"(ptr));

(a) Load vector from capability in register

#if __has_feature(pure_capabilities)
#define PTR_REG "C"
#else
#define PTR_REG "r"
#endif

// Produces "vle32.v v8, (ca0)"
// or "vle32.v v8, (a0)"
asm ("vle32.v %0, (%1)"

: "=vr"(vec_val)
: PTR_REG(ptr));

(b) Portable code for CHERI and non-CHERI1.
1 This relies on the pure_capabilities feature flag, which was added to CHERI-Clang for this project.

Figure 4.2: Inline assembly examples (CHERI)

4.2 Compiling vector code with CHERI-Clang

Current CHERI compiler work is done on CHERI-Clang, a fork of Clang and other LLVM
tools that supports capabilities. It’s based on LLVM 13, and supports vanilla RVV v0.1, but
the vector-related code had not been updated to handle capabilities. This section outlines
the changes required to compile vector programs for CHERI-RVV using CHERI-Clang. The
required command-line options for CHERI-Clang are noted in Appendix D.2.

4.2.1 Adapting vector assembly instructions to CHERI

LLVM uses a domain-specific language to describe the instructions it can emit for a given
target. The RISC-V target describes multiple register sets that RISC-V instructions can use.
Vanilla RVV vector memory accesses use the General Purpose Registers (GPR) to store the base
address of each access. CHERI-Clang added a GPCR set, i.e. the General Purpose Capability
Registers, which use a different register constraint. We created two mutually exclusive versions
of each vector access instruction: one for integer mode using a GPR base address; and one for
capability mode using GPCR.

With the above changes, inline assembly could be used to insert capability-enabled vector
instructions (Fig. 4.2a). However, as this requires using a capability register constraint for
the base address, inline assembly code written for CHERI-RVV is not inherently compatible
with vanilla RVV. For un-annotated pointers (e.g. int*), which are always capabilities in
pure-capability code and integers in legacy or hybrid code, a conditional macro can be used to
insert the correct constraint (Fig. 4.2b). However, this falls apart in hybrid code for manually
annotated pointers (e.g. int* __capability) because the macro cannot detect the annotation.

49

4.2.2 Adapting vector intrinsics to CHERI

Vector intrinsics are another story entirely. When compiling for pure-capability libraries,
all attempts to use vector intrinsics crash CHERI-Clang. This is due to a similar issue to
inline assembly: the intrinsics (both the Clang intrinsic functions and the underlying LLVM
IR intrinsics) were designed to take regular pointers and cannot handle it when capabilities
are used instead. Unfortunately the code for generating the intrinsics is spread across many
files, and there’s no simple way to change the pointers to capabilities (much less changing it
on-the-fly for capability vs. integer mode).

It seems that significant engineering work is required to bring vector intrinsics up to scratch
on CHERI-Clang. We did experiment with creating replacement wrapper functions, where
each function tried to mimic an intrinsic using inline asssembly. These were rejected for two
reasons: the overhead of a function call for every vector instruction6, and lack of support for
passing vector types as arguments or return values. The RISC-V ABI treats all vector registers
as temporary and explicitly states that “vector registers are not used for passing arguments or
return values”[29]. CHERI-Clang would try to return them by saving them to the stack, but
this had its own issues.

4.2.3 Storing scalable vectors on the stack

If a program uses more data than can fit in registers, or calls a function which may overwrite
important register values, the compiler will save those register values to memory on the stack.
Because vector registers are temporary, and thus may be overwritten by called functions, they
must also be saved/restored from the stack (see Fig. B.1). This also applies to multiprocessing
systemswhere a process can be paused, have the state saved, and resume later. RVV provides the
whole-register memory access instructions explicitly to make this process easy[2, Section 7.9].

CHERI-Clang contains an LLVM IR pass7 which enforces strict bounds on so-called “stack
capabilities” (capabilities pointing to stack-allocated data), which by definition requires knowing
the size of the data ahead of time. This pass assumes all stack-allocated data has a static size,
and crashes when dynamically-sized types e.g. scalable vectors are allocated. It is therefore
impossible (for now) to save vectors on the stack in CHERI-Clang, although it’s clear that
it’s theoretically possible. For example, the length of the required vector allocations could
be calculated based on VLEN before each stack allocation is performed, or if performance is
a concern stack bounds for those allocations could potentially be ignored altogether. These
possibilities are investigated further in the next section.

6We tried using preprocessor macros instead of real functions, but they are difficult to program and do not
support returning values like intrinsics do.

7llvm/lib/CodeGen/CheriBoundAllocas.cpp in CTSRD-CHERI/llvm-project on GitHub

50

https://github.com/CTSRD-CHERI/llvm-project/blob/master/llvm/lib/CodeGen/CheriBoundAllocas.cpp

4.3 Testing and evaluation

We developed a self-checking test program for the emulator to execute, which helped gather
information for the hypotheses and find bugs in the compiler and emulator. Initially it was
hand-written, but in order to test a wide range of vtypes we began generating it with a Python
script. It consists of fifty-seven tests of different vector memory access archetypes under various
configurations (Table 4.1).

The test code uses intrinsics wherever the compiler supports them (see Appendix D.3), and
falls back to inline assembly otherwise. Inline assembly uses the preprocessor macro from
Fig. 4.2b to handle CHERI and non-CHERI platforms.

The tests are run inside harnesses, which provide setup and self-checking code for common
cases: The Vanilla harness tests a simple memcpy between two arrays; Masked tests that every
other element is copied, not all of them; Segmented tests a memcpy into four separate output
arrays, each a different field of a four-field structure. There is also a special test for fault-
only-first: FoF loads are performed at the edge of mapped memory, and the test shows that
out-of-bounds exceptions are swallowed and vl is reduced accordingly. All tests were successful
when they ran, but some testbenches could not be built with some compilers. The full set of
test results is available in Appendix F.

Test Scheme Harness Compilers

Unit Stride Vanilla All
Strided Vanilla All
Indexed Vanilla All
Whole Register Vanilla All
Fault-only-First Vanilla All
Unit Stride (Masked) Masked All
Bytemask Load Masked llvm-15 only
Unit Stride (Segmented) Segmented All
Fault-only-First Boundary — All

Table 4.1: vector_memcpy test schemes and harnesses

Hypothesis H-3 - Compiling/running legacy code in integer mode

Vector code can be compiled in legacy forms (with integer addressing) and function
correctly on CHERI with no source code changes.

This is true for CHERI-RVV, when running the compiled programs in integer mode, as long as
the programs only access memory within the DDC.

All vanilla RVV instructions have counterparts with identical encodings and behaviour in
CHERI-RVV integer mode, assuming the accessed addresses are all accessible through the DDC.

51

There are no changes to instruction behaviour that require the compiler’s handling of them to
change, so a non-CHERI compiler and an integer-mode-CHERI compiler can always produce the
same vector instructions from the same code. This does not apply to capability-mode-CHERI,
because integer addressing is not supported in capability-mode-CHERI-RVV.

All legacy vector programs should produce equivalent binaries when compiled for integer-
mode-CHERI. On top of that, all binaries compiled for vanilla RVV platforms should produce
the same results when run on an equivalent integer-mode-CHERI-RVV platform. Both claims
assume the program doesn’t perform out-of-bounds accesses relative to the DDC.

Hypothesis H-4 - Converting legacy code to pure-capability code

Legacy vector code can be compiled into a pure-capability form with no changes.

This is true for CHERI-RVV, but cannot be done in practice yet. Engineering effort is required
to support this in CHERI-Clang. Because this argument concerns source code, all three ways
to generate CHERI-RVV instructions must be examined.

Inline Assembly — Unlikely

For GCC-style inline assembly, it is currently impossible for integer-addressed RVV source
code to be recompiled in pure-capability mode without modification. Integer-addressed RVV
uses general-purpose registers for the base address, but pure-capability instructions require
capability registers instead. The base address register can either be specified directly, so must
be changed to a capability register; or specified using template syntax and an “r” constraint,
which must be changed to a “C” constraint (Figs. 4.1 and 4.2). Using a preprocessor macro (e.g.
Fig. 4.2b) could make code portable between non-CHERI and CHERI, but this is still a source
code change.

In theory, one could change the behaviour of inline assembly to automatically convert
general purpose registers/constraints to capability versions in specific circumstances. However,
this can have wide-reaching ramifications, potentially making code more difficult to understand,
or even breaking existing code.

Intrinsics — Yes

The current specification for RVV intrinsics uses pointer types for all base addresses[27]. In
pure-capability compilers all pointers should be treated as capabilities instead of integers,
including those in intrinsics. All RVV memory intrinsics have equivalent RVV instructions,
which all use capabilities in pure-capability mode, so changing the intrinsics to match is valid.

Assuming all base address pointers are created in a valid manner (e.g. through malloc
or monotonic decrease, and not through integer literals), the conversion to pure-capability

52

should make them all valid capabilities which are compatible with the intrinsics. Therefore
well-behaved code using RVV intrinsics should be compilable in pure-capability mode without
changes.

This is not currently the case for CHERI-Clang, as RVVmemory access intrinsics are broken,
but this can be fixed with engineering effort.

Auto-vectorization — Yes

All vanilla RVV instructions have counterparts with identical encodings and behaviour in
CHERI-RVV pure-capability mode, assuming the base addresses can be converted to valid
capabilities. Any scalar code that can be a) compiled in scalar pure-capability mode8, and b) auto-
vectorized by a legacy RVV compiler, must have an equivalent pure-capability vectorized form.
This form could be acquired by performing the auto-vectorization in legacy mode, ensuring
all base addresses are available as capabilities, then making the vector instructions use those
capabilities. Therefore a pure-capability compiler can always auto-vectorize CHERI-compliant
scalar code if some legacy compiler can also auto-vectorize it.

This is not currently possible for CHERI-Clang, as RVV auto-vectorization is not imple-
mented yet. Similar models (e.g. Arm SVE) already have auto-vectorization, so RVV auto-
vectorization (and thus CHERI-RVV auto-vectorization) should be possible.

Hypothesis H-5 - Saving vectors on the stack

Vector code that saves/restores variable-length vectors to/from the stack can be com-
piled on CHERI-RVV with no source code changes.

This is true in theory, but not yet supported by CHERI-Clang in practice. Placing variable-length
structures on the stack is possible as long as the length can be known at runtime (and as long
as the stack has space, of course). This isn’t exclusive to CHERI — to push and pop values
on the stack, the stack pointer must be incremented or decremented by the size of the value.
Because the length already has to be measured, and CHERI-RISC-V supports setting capability
bounds from runtime-computed values, it’s entirely possible to correctly set tight bounds for
capabilities pointing to variable-length vectors on the stack.

8This ensures all memory accesses use valid capabilities.

53

A minor complication is presented by a note in TR-949[8, Section 3.8.2] concerning “re-
materializing bounded stack variables”. This section implies LLVM can try to re-create a
pointer-to-stack at any time with minimal cost, but this may not be able to apply to vectors.
Measuring the bounds requires measuring VLMAX by changing vl, which could then require
saving/restoring the old value. This is only a performance issue, and in the worst case we can
just say pointers-to-stack-vectors are not re-materializable, so it isn’t a dealbreaker. Further
investigation of this issue is left as future work.

Hypothesis H-6 - Running CHERI-RVV code in a multiprocessing sys-
tem

CHERI-vector code can run correctly in multiprocessing systems, where execution
may be paused and resumed on interrupts or context switches.

This requires two conditions: an OS must be able to save and restore vector state, and the
vector hardware must support resuming from an interrupted state. The first condition is easy
to fulfil by extending the previous hypothesis. If it is possible to save variable-length vectors
on the stack, given their length is known at runtime, it must also be possible to save their data
on the heap. Some OSs might need to make changes to their “current process state” structure
to support variable-length data, and they would also need to allocate space for the vtype value,
but it is certainly possible.

The second condition can be upheld in two ways. First, if the OS only context switches and
services interrupts while the vector hardware is in a complete state (i.e. not partially executing
an instruction), then context switches and interrupts are completely transparent to the vector
hardware and no changes need to be made. Secondly, if context switches and interrupts can
actually interrupt vector instructions partway through, then they can only be cleanly resumed
if the vector hardware supports precise traps for the exact instruction being executed.

4.4 Recommended changes for CHERI-Clang

• Build on current work to make all RVV memory access instructions and pseudoinstruc-
tions CHERI-compatible.

• Make RVV memory access intrinsics take capabilities as arguments when compiled in
pure-capability mode.

• Make the CheriBoundAllocas IR pass handle scalable vectors by finding the length at
runtime, and investigate re-materialization of those pointers.

• Bring up CHERI-enabled auto-vectorization in parallel with vanilla auto-vectorization.

54

CHAPTER 5

Capabilities-in-vectors

Implementing memcpy correctly for CHERI systems requires copying the tag bits as well as the
data. As it stands, any vectorized memcpy compiled and executed on the systems described in
Chapters 3 and 4 will not copy the tag bits, because the vector registers cannot store the tag bits
and indeed cannot store valid capabilities. memcpy is very frequently vectorized, as noted in
Section 1.1, so it’s vital that CHERI-RVV can implement it correctly. Manipulating capabilities-
in-vectors could also accelerate CHERI-specific processes, such as revoking capabilities for
freed memory[30].

This chapter examines the changes made to the emulator to support storing capabilities-
in-vectors, and determines the conditions required for the related hypotheses to be true.
Appendix E.2 lists the changes made and all the relevant properties of the emulator that allow
storing capabilities in vectors.

5.1 Extending the emulator

We developed a set of goals based on Hypotheses H-7 to H-9.

• (Hypothesis H-7) Vector registers should be able to hold capabilities.

• (Hypothesis H-8) At least one vector memory operation should be able to load/store
capabilities from vectors.

– Because memcpy should copy both integer and capability data, vector memory
operations should be able to handle both together.

• (Hypothesis H-9) Vector instructions should be able to manipulate capabilities.

– Clearing tag bits counts as manipulation.

55

First, we considered the impact on the theoretical vector model. We decided that any
operation with elements smaller than CLEN cannot output valid capabilities under any circum-
stances1, meaning a new element width equal to CLEN must be introduced. We set ELEN =
VLEN = CLEN = 1282 for our vector unit.

Two new memory access instructions were created to take advantage of this new element
width, and the vsetvl family were adjusted to support 128-bit values. Similar to the CHERI-
RISC-V LC/SC instructions, we implemented 128-bit unit-stride vector loads and stores, which
took over officially-reserved encodings3 we expected official versions to use. We have not
tested other types of access, but expect them to be noncontroversial. Indexed accesses require
specific scrutiny, as they may be expected to use 128-bit offsets on 64-bit systems. The memory
instructions had to be added to CHERI-Clang manually, and Clang already has support for
setting SEW=128 in the vsetvl family (Table E.1). These instruction changes affected inline
assembly only, rather than adding vector intrinsics, because CHERI-Clang only supports inline
assembly anyway.

The next step was to add capability support to the vector register file. Our approach to
capabilities-in-vectors is similar in concept to the Merged scalar register file for CHERI-RISC-V
(Section 2.6.1), in that the same bits of a register can be accessed in two contexts: an integer
context, zeroing the tag, or a capability context which maintains the current tag. The only
instructions which can access data in a capability context are the aforementioned 128-bit
memory accesses4. All other instructions will read out untagged integer data and clear tags
when writing data.

A newCHERI-specific vector register filewas created, where each register is a SafeTaggedCap
(p36) i.e. either zero-tagged integer data or a valid tagged capability. This makes it much harder
to accidentally violate Provenance, and reuses the code path (and related security properties)
for accessing capabilities in memory. Just like scalar accesses, vectorized capability accesses
are atomic and 128-bit aligned.

5.2 Testing and evaluation

We constructed a second test program to ensure memcpy could be performed correctly with
capabilities-in-vectors. It copies an array of Element structures that hold pointers to static
Base structures. On CHERI platforms, even in Integer mode, capability pointers are used

1This avoids edge cases with masking, where one part of a capability could be modified while the other parts
are left alone.

2The tag bits are implicitly instead of explicitly included here because VLEN,ELEN must be powers of two.
3The RVV spec mentions, but does not specify, potential encodings for 128-bit element widths and instructions

([2, p10, p32], Table E.2).
4The encoding mode (Section 2.6.3) does not affect register usage: when using the Integer encoding mode,

instructions can still access the vector registers in a capability context. This is just like how scalar capability
registers are still accessible in Integer encoding mode.

56

and copied. The first test simply copies the data, and tests that all the copied pointers still
work, which succeeds on all compilers/architectures. The second test is CHERI-exclusive, and
invalidates all pointers during the copy process by performing integer arithmetic on the vector
registers. The copied pointers are examined to make sure their tag bits are all zeroed, and this
test succeeds on both CHERI configurations.

RV32 RV-64

llvm-13 llvm-13 llvm-15 gcc CHERI CHERI (Int)

Copy Y Y Y Y Y Y
Copy + Invalidate - - - - Y Y

Table 5.1: vector_memcpy_pointers results

Hypothesis H-7 - Holding capabilities in vectors

It is possible for vector registers to hold capabilities to enable copying without violating
CHERI security principles.

It is possible for a single vector register to hold a capability (and differentiate a capability from
integer data) as long as VLEN = CLEN. VLEN could also be larger, and a compliant implementa-
tion must then have VLEN be an integer multiple of CLEN. In theory, one could also describe a
scheme where capabilities must be held by multiple registers together (e.g. VLEN = CLEN/2
with one tag bit for every two registers), but this would complicate matters.

If an implementation decides, as we did, that elements of width CLEN are required to
produce capabilities, then VLEN ≥ ELEN therefore VLEN ≥ CLEN. If a short VLEN is absolutely
essential, one could place precise guarantees on a specific set of instructions to enable it (e.g.
SEW=64, LMUL=2 unit-stride unmasked loads could guarantee atomic capability transfers)
but the emulator does not consider this. The CHERI security properties also impose some
conditions.

Provenance & Monotonicity

The tag bit must be protected such that capabilities cannot be forged from integer data. The
emulator’s integer/capability context approach, where the tag bit may only be set on copying a
valid capability from memory, and the output tag bit is zeroed on all other accesses, enforces
this correctly.

Integrity

Integrity is not affected by how a capability is stored, as long as the other properties are
maintained.

57

Hypothesis H-8 - Sending capabilities between vectors and memory

It is possible for vector memory accesses to load and store capabilities from vector
registers without violating CHERI security principles.

For this to be the case, the instructions which can load/store capabilities must fulfil certain
alignment and atomicity requirements. They must require all accesses be CLEN-aligned, or at
least only load valid capabilities from aligned addresses, because tag bits only apply to CLEN-
aligned regions. TR-951 states that capability memory accesses must be atomic[7, Section 11.3].
This applies to vectors, even in ways that don’t apply to scalar accesses.

Individual element accesses for a vector access must be atomic relative to each other. This
is relevant for e.g. a strided store using an unaligned stride, such that one element writes a
valid capability and another element overwrites part of that address range. If unaligned 128-bit
accesses are allowed, then either the unaligned second element should “win” and clear relevant
tag bits, or the first element should “win” and write the full capability atomically. The emulator
requires all 128-bit accesses to be aligned so meets this requirement easily.

Provenance

Provenance requires the accesses be atomic as described above, and require that tag bits are
copied correctly: the output tag bit must only be set if the input had a valid tag bit. These
conditions also apply to scalar accesses.

Monotonicity

These loads/stores do not attempt to manipulate capabilities, so have no relevance to Monoton-
icity.

Integrity

The same conditions for scalar and other vector accesses apply to maintain Integrity: namely
that the base capability for each access should be checked to ensure it is valid. The emulator
doesn’t allow capabilities-in-vectors to be dereferenced directly, but if an implementation
allows it those capabilities would also need to be checked.

58

Hypothesis H-9 - Manipulating capabilities in vectors

It is possible for vector instructions to manipulate capabilities in vector registers
without violating CHERI security principles.

The emulator limits all manipulation to clearing the tag bit, achieved by writing data to the
register in an integer context. In theory, it’s possible to domore complex transformations, which
can be proven by implementing each vector manipulation on vector elements as sequential
scalar manipulations on scalar elements.

With this method, all pre-existing scalar capability manipulations can become vector
manipulations, but the utility seems limited. For example, instructions for creating capabilities
or manipulating bounds en masse don’t have an obvious use case. If more transformations
are added they should be considered carefully, rather than creating vector equivalents for all
scalar manipulations. For example, revocation as described in [30] may benefit from a vector
equivalent to CLoadTags.

Provenance & Monotonicity

Because the only possible manipulations clear the tag bit, it’s impossible to create or change
capabilities, so Provenance andMonotonicity cannot be violated. Anymanipulations that create
capabilities, or potentially any manipulations that transfer capabilities from vector registers
directly to scalar registers, would require more scrutiny.

Integrity

As stated before, capabilities-in-vectors cannot be dereferenced directly, so there is no impact
on Integrity.

59

CHAPTER 6

Conclusion

This project demonstrated the viability of integrating CHERI with scalable vector models
by producing an example CHERI-RVV implementation. This required both research effort
in studying the related specifications ([7, 2]), demonstrated in Chapter 2, and a substantial
implementation effort demonstrated in Chapters 3 to 5. We produced four software artifacts: a
Rust wrapper for the cheri-compressed-cap C library (900 lines of code), a RISC-V emulator
supporting multiple architecture extensions (5,300 LoC), a fork of CHERI-Clang supporting
CHERI-RVV (400 changed LoC), and test programs for the emulator (3,000 LoC1). Developing
these artifacts provided enough information to make conclusions for the initial hypotheses
(Table 1.1).

6.1 Evaluating hypotheses

Hypothesis H-1 showed that all memory references can be replaced with capabilities in all
RVV instructions while maintaining functionality. Hypothesis H-2 then alleviated performance
concerns by showing it was possible to combine the required capability checks for all vector
accesses, amortizing the overall cost of checking, although with varying practical benefit.

On the software side Hypotheses H-3 and H-4 showed that non-CHERI vectorized code
could be run on CHERI systems, and even recompiled for pure-capability platforms with no
source code changes, but that CHERI-Clang’s current state adds some practical limitations. We
developed the vector_memcpy test program to show that despite those limitations, it’s possible
to write correct CHERI-RVV code on current compilers. Hypotheses H-5 and H-6 address
the pausing and resuming of vector code, specifically saving and restoring variable-length
architectural state, concluding that it is entirely possible but requires software adjustments.

Through a limited investigation of capabilities-in-vectors, Hypotheses H-7 to H-9 showed
that a highly constrained implementation could enable a fully-functional vectorized memcpy,

1This doesn’t include automatically generated code.

60

as demonstrated in the vector_memcpy_pointers test program, without violating CHERI
security principles. It should be possible to extend the CHERI-RVV ISA with vector equivalents
of existing CHERI scalar instructions, but we did not investigate this further.

Clearly, scalable vector models can be adapted to CHERI without significant loss of function-
ality. Most of the hypotheses are general enough to cover other scalable models, e.g. Arm SVE,
but any differences from RVV’s model will require careful examination. Given the importance
of vector processing to modern computing, and thus its importance to CHERI, we hope that
this research paves the way for future vector-enabled CHERI processors.

6.2 Future work

The stated purpose of this project was to enable future implementations of CHERI-RVV and
CHERI Arm SVE. We’ve shown this is feasible, and we believe our research is enough to
create an initial CHERI-RVV specification, but both could benefit from more research on
capabilities-in-vectors.

All architectures may benefit from more advanced vectorized capability manipulation.
Because these processes are still evolving, it may be wise to standardize the first version of
CHERI-RVV based on this dissertation and only add new instructions as required. Once created,
the standard can be implemented in CHERI-Clang2 and added to existing CHERI-RISC-V
processors3.

More theoretically, other vector models could benefit from dereferencing capabilities-in-
vectors. Arm SVE has addressing modes that directly use vector elements as memory references,
as do its predecessors and contemporaries. A draft specification of CHERI-x86 is in the works[7,
Chapter 6], and existing x86 vector models like AVX have similar features. This may prove
impractical, but this could be mitigated by e.g. replacing these addressing modes with variants
of RVV’s “indexed” mode. Once this problem is solved, CHERI will be able to match the memory
access abilities of any vector ISA it needs to, making it that much easier for industry to adopt
CHERI in the long term.

2See Section 4.4 for the other required changes to CHERI-Clang.
3https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-risc-v.html

61

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-risc-v.html

References

[1] Nigel Stephens et al. “The ARM Scalable Vector Extension”. In: IEEE Micro 37.2 (March
2017), pp. 26–39. issn: 0272-1732. doi: 10.1109/MM.2017.35.

[2] RISC-V ”V” Vector Extension. 20th September 2021. url:
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-
spec-1.0.pdf.

[3] Robert N M Watson et al. An Introduction to CHERI. UCAM-CL-TR-941. September 2019,
p. 43.

[4] László Szekeres et al. “SoK: Eternal War in Memory”. In: 2013 IEEE Symposium on
Security and Privacy. May 2013, pp. 48–62. doi: 10.1109/SP.2013.13.

[5] Robert N.M. Watson et al. “CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization”. In: 2015 IEEE Symposium on Security and
Privacy. San Jose, CA: IEEE, May 2015, pp. 20–37. isbn: 978-1-4673-6949-7. doi:
10/gfpgzz.

[6] Andrew Waterman and Krste Asanović, eds. The RISC-V Instruction Set Manual Volume I:
Unprivileged ISA. 13th December 2019. url: https://github.com/riscv/riscv-isa-
manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf.

[7] Robert N. M. Watson et al. Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 8). UCAM-CL-TR-951. University of Cambridge,
Computer Laboratory, 2020. url:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html (visited on
06/10/2021).

[8] Alexander Richardson. Complete Spatial Safety for C and C++ Using CHERI Capabilities.
UCAM-CL-TR-949. University of Cambridge, Computer Laboratory, June 2020, p. 189.
url: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.pdf.

[9] Andrew Waterman, Krste Asanovic and John Hauser, eds. The RISC-V Instruction Set
Manual Volume II: Privileged Architecture. 4th December 2021. url:
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-
v1.12/riscv-privileged-20211203.pdf.

62

https://doi.org/10.1109/MM.2017.35
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf
https://doi.org/10.1109/SP.2013.13
https://doi.org/10/gfpgzz
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

[10] Matthew Johns and Tom J. Kazmierski. “A Minimal RISC-V Vector Processor for
Embedded Systems”. In: 2020 Forum for Specification and Design Languages (FDL).
September 2020, pp. 1–4. doi: 10/gnrfdb.

[11] Stefano Di Mascio et al. “On-Board Decision Making in Space with Deep Neural
Networks and RISC-V Vector Processors”. In: Journal of Aerospace Information Systems
18.8 (1st August 2021), pp. 553–570. doi: 10/gnrfch.

[12] AndesCore NX27V Processor. Andes Technology. url:
https://www.andestech.com/en/products-solutions/andescore-
processors/riscv-nx27v/ (visited on 11/12/2021).

[13] SiFive Intelligence X280 - SiFive. sifive.com. url:
https://www.sifive.com/cores/intelligence-x280 (visited on 15/05/2022).

[14] Chen Chen et al. “Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline
Out-of-Order 64-Bit High Performance RISC-V Processor with Vector Extension :
Industrial Product”. In: 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). May 2020, pp. 52–64. doi:
10.1109/ISCA45697.2020.00016.

[15] Matheus Cavalcante et al. “Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector
Processor With Multiprecision Floating-Point Support in 22-Nm FD-SOI”. In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 28.2 (February 2020),
pp. 530–543. issn: 1557-9999. doi: 10/gnrd7v.

[16] Imad Al Assir et al. “Arrow: A RISC-V Vector Accelerator for Machine Learning
Inference”. 15th July 2021. arXiv: 2107.07169 [cs]. url:
http://arxiv.org/abs/2107.07169 (visited on 11/12/2021).

[17] Kariofyllis Patsidis et al. “RISC-V2: A Scalable RISC-V Vector Processor”. In: 2020 IEEE
International Symposium on Circuits and Systems (ISCAS). October 2020, pp. 1–5. doi:
10/gnfrn3.

[18] Michael Platzer and Peter Puschner. “Vicuna: A Timing-Predictable RISC-V Vector
Coprocessor for Scalable Parallel Computation”. In: 33rd Euromicro Conference on
Real-Time Systems (ECRTS 2021). Ed. by Björn B. Brandenburg. Vol. 196. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021, 1:1–1:18. isbn: 978-3-95977-192-4. doi:
10/gnfrn2.

[19] Francesco Minervini and Oscar Palomar Perez. “Vitruvius: An Area-Efficient RISC-V
Decoupled Vector Accelerator for High Performance Computing” (RISC-V Week - Paris).
4th May 2022. url: https://www.youtube.com/watch?v=tlC5kMhrh-k (visited on
13/05/2022).

63

https://doi.org/10/gnrfdb
https://doi.org/10/gnrfch
https://www.andestech.com/en/products-solutions/andescore-processors/riscv-nx27v/
https://www.andestech.com/en/products-solutions/andescore-processors/riscv-nx27v/
https://www.sifive.com/cores/intelligence-x280
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10/gnrd7v
https://arxiv.org/abs/2107.07169
http://arxiv.org/abs/2107.07169
https://doi.org/10/gnfrn3
https://doi.org/10/gnfrn2
https://www.youtube.com/watch?v=tlC5kMhrh-k

[20] Gopinath Mahale et al. “A RISC-V VPU for Very Long and Sparse Vectors” (RISC-V
Week - Paris). March 2021. url:
https://open-src-soc.org/2022-05/media/posters/4th-RISC-V-Meeting-
2022-05-03-Gopinath-Mahale-poster.pdf (visited on 13/05/2022).

[21] Jonathan Woodruff et al. “CHERI Concentrate: Practical Compressed Capabilities”. In:
(2019), p. 15. doi: 10/gm9ngf.

[22] Alexandre Joannou et al. “Efficient Tagged Memory”. In: 2017 IEEE International
Conference on Computer Design (ICCD). November 2017, pp. 641–648. doi: 10/ghnj26.

[23] H.J. Lu et al., eds. System V Application Binary Interface v1.0. 28th January 2018. url:
https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-
psABI-1.0.pdf (visited on 15/05/2022).

[24] Kayvan Memarian et al. “Exploring C Semantics and Pointer Provenance”. In:
Proceedings of the ACM on Programming Languages 3 (POPL 2nd January 2019), pp. 1–32.
issn: 2475-1421. doi: 10.1145/3290380.

[25] Arm Ltd. Arm Architecture Reference Manual Supplement - Morello for A-profile
Architecture. 25th June 2021. url:
https://developer.arm.com/documentation/ddi0606/latest.

[26] Arm Ltd. Arm Compiler Scalable Vector Extension User Guide Version 6.12. 0612-00.
27th February 2019. url:
https://developer.arm.com/documentation/100891/latest/ (visited on
13/05/2022).

[27] RISC-V Vector Extension Intrinsics (v1.0). RISC-V Non-ISA Specifications, 16th November
2021. url: https://github.com/riscv-non-isa/rvv-intrinsic-
doc/blob/00882f19a84ab354dc8cf6a10c100b8daa2654e4/rvv-intrinsic-
api.md (visited on 16/11/2021).

[28] Arm Ltd. ARM C Language Extensions for SVE 0.0bet6. 00bet6. 2020. url:
https://developer.arm.com/documentation/100987/0000/ (visited on
13/05/2022).

[29] RISC-V ABIs Specification v1.0rc2. 6th April 2022. url: https://github.com/riscv-
non-isa/riscv-elf-psabi-doc/releases/download/v1.0-rc2/riscv-abi.pdf.

[30] Hongyan Xia et al. “CHERIvoke: Characterising Pointer Revocation Using CHERI
Capabilities for Temporal Memory Safety”. In: (2019), p. 14. doi: 10/gm9ngg.

64

https://open-src-soc.org/2022-05/media/posters/4th-RISC-V-Meeting-2022-05-03-Gopinath-Mahale-poster.pdf
https://open-src-soc.org/2022-05/media/posters/4th-RISC-V-Meeting-2022-05-03-Gopinath-Mahale-poster.pdf
https://doi.org/10/gm9ngf
https://doi.org/10/ghnj26
https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
https://doi.org/10.1145/3290380
https://developer.arm.com/documentation/ddi0606/latest
https://developer.arm.com/documentation/100891/latest/
https://github.com/riscv-non-isa/rvv-intrinsic-doc/blob/00882f19a84ab354dc8cf6a10c100b8daa2654e4/rvv-intrinsic-api.md
https://github.com/riscv-non-isa/rvv-intrinsic-doc/blob/00882f19a84ab354dc8cf6a10c100b8daa2654e4/rvv-intrinsic-api.md
https://github.com/riscv-non-isa/rvv-intrinsic-doc/blob/00882f19a84ab354dc8cf6a10c100b8daa2654e4/rvv-intrinsic-api.md
https://developer.arm.com/documentation/100987/0000/
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/releases/download/v1.0-rc2/riscv-abi.pdf
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/releases/download/v1.0-rc2/riscv-abi.pdf
https://doi.org/10/gm9ngg

[31] Shiva Chen and Hsiangkai Wang. “Compiler Support For Linker Relaxation in RISC-V”
(RISC-V Workshop Taiwan). 13th March 2019. url:
https://riscv.org/wp-content/uploads/2019/03/11.15-Shiva-Chen-
Compiler-Support-For-Linker-Relaxation-in-RISC-V-2019-03-13.pdf
(visited on 04/05/2022).

65

https://riscv.org/wp-content/uploads/2019/03/11.15-Shiva-Chen-Compiler-Support-For-Linker-Relaxation-in-RISC-V-2019-03-13.pdf
https://riscv.org/wp-content/uploads/2019/03/11.15-Shiva-Chen-Compiler-Support-For-Linker-Relaxation-in-RISC-V-2019-03-13.pdf

APPENDIXA

rust_cheri_compressed_cap
documentation

This section reproduces the documentation for cheri-compressed-capC structs and functions
that were linked into Rust. The full documentation1 explains other Rust-specific decisions and
implementation details.

1Available in https://theturboturnip.github.io/files/doc/rust_cheri_compressed_cap/ or at-
tached to submission

66

https://theturboturnip.github.io/files/doc/rust_cheri_compressed_cap/

Struct CcxCap

Struct rust_cheri_compressed_cap::CcxCap ⎘

Fields

_cr_cursor: T::Addr

cr_pesbt: T::Addr

_cr_top: T::FfiLength

#[repr(C, align(16))]

pub struct CcxCap<T: CompressedCapability> {

 _cr_cursor: T::Addr,

 cr_pesbt: T::Addr,

 _cr_top: T::FfiLength,

 cr_base: T::Addr,

 cr_tag: u8,

 cr_bounds_valid: u8,

 cr_exp: u8,

 cr_extra: u8,

}

Structure matching the C type _cc_N(cap) . Field order and layout is binary-compatible

with the C version, assuming the C preprocessor macro

_CC_REVERSE_PESBT_CURSOR_ORDER is not defined.

This is a plain-old-data type. It only supplies getters and setters, and does not guarantee

any safety/correctness. For example, there are no added assertions or checks if you set the

cursor to a value outside the bounds. However, the C FFI functions from

CompressedCapability may have their own asserts. These are documented where possible.

For a safe interface, use one of the crate::wrappers

The bottom half of the capability as stored in memory.

If Self::cr_tag is 1, this is the capability s̓ “cursor” i.e. the address it s̓ actually pointing to.

The top half of the capability as stored in memory.

If Self::cr_tag is 1, this is the compressed capability metadata (permissions, otype, bounds,

etc.).

☰

67

cr_base: T::Addr

cr_tag: u8

cr_bounds_valid: u8

cr_exp: u8

cr_extra: u8

Implementations

The top of this capability s̓ valid address range. Derived from Self::cr_pesbt. As long as

Self::cr_tag is 1, the getter/setter will ensure it matches.

The base of this capability s̓ valid address range. Derived from Self::cr_pesbt. As long as

Self::cr_tag is 1, the getter/setter will ensure it matches.

Tag - if 1, this is a valid capability, 0 it s̓ just plain data

0 (false) if the bounds decode step was given an invalid capability. Should be 1 (true) for all

non-Morello capabilities.

The exponent used for storing the bounds. Stored from various places, only used in

Morello-exclusive function cap_bounds_uses_value().

“Additional data stored by the caller.” Seemingly completely unused, essentially padding.

[−] impl<T: CompressedCapability> CcxCap<T> [src]

Implements getters and setters similar to the C++-only member functions in the header.

pub fn reg_representation(&self) -> (bool, [T::Addr; 2]) [src]

Returns a (tag, [cursor, pesbt]) tuple that represents all data required to store a

capability in a register.

To store capabilities in memory, see Self::mem_representation

pub fn mem_representation(&self) -> (bool, [T::Addr; 2]) [src]

Returns a (tag, [cursor, pesbt]) tuple that represents all data required to store a

capability in memory.

To store capabilities in a register, see Self::reg_representation

pub fn tag(&self) -> bool [src]

pub fn set_tag(&mut self, tag: bool) [src]

pub fn base(&self) -> T::Addr [src]

☰

68

pub fn top(&self) -> T::Length [src]

pub fn bounds(&self) -> (T::Addr, T::Length) [src]

pub fn set_bounds_unchecked(

 &mut self,

 req_base: T::Addr,

 req_top: T::Length

) -> bool

[src]

Sets the base and top of this capability using C FFI function

CompressedCapability::set_bounds. Updates the PESBT field correspondingly. On non-

Morello platforms, will fail with an assertion error if Self::tag() is not set.

pub fn address(&self) -> T::Addr [src]

pub fn set_address_unchecked(&mut self, addr: T::Addr) [src]

pub fn offset(&self) -> T::Offset [src]

pub fn length(&self) -> T::Length [src]

pub fn software_permissions(&self) -> u32 [src]

pub fn set_software_permissions(&mut self, uperms: u32) [src]

pub fn permissions(&self) -> u32 [src]

pub fn set_permissions(&mut self, perms: u32) [src]

pub fn otype(&self) -> u32 [src]

pub fn is_sealed(&self) -> bool [src]

pub fn set_otype(&mut self, otype: u32) [src]

pub fn reserved_bits(&self) -> u8 [src]

pub fn set_reserved_bits(&mut self, bits: u8) [src]

pub fn flags(&self) -> u8 [src]

pub fn set_flags(&mut self, flags: u8) [src]

pub fn is_exact(&self) -> bool [src]

Helper function for easily calling FFI function

CompressedCapability::is_representable_cap_exact on this capability. Assertions are

present in the C code, but should never be triggered.

pub fn is_representable_with_new_addr(&self, new_addr: T::Addr) [src]

☰

69

Trait Implementations

Auto Trait Implementations

-> bool

Helper function for easily calling FFI function

CompressedCapability::is_representable_new_addr on this capability. Assertions are

present in the C code, but should never be triggered.

[−] impl<T: Clone + CompressedCapability> Clone for CcxCap<T>
where

 T::Addr: Clone,

 T::Addr: Clone,

 T::FfiLength: Clone,

 T::Addr: Clone,

[src]

[−] impl<T: CompressedCapability> Debug for CcxCap<T> [src]

Debug printer for capabilities that decodes the PESBT field instead of printing it raw.

[−] impl<T: CompressedCapability> Default for CcxCap<T> [src]

Equivalent to initialization pattern used in tests:

cc64.rs doesnʼt pick it up when it was automatically #derive-d, so it s̓ manually

implemented here

ccx_cap_t value;

memset(&value, 0, sizeof(value));

[−] impl<T: CompressedCapability> PartialEq<CcxCap<T>> for

CcxCap<T>

[src]

Implements operator== from cheri_compressed_cap_common.h

impl<T: Copy + CompressedCapability> Copy for CcxCap<T>
where

 T::Addr: Copy,

 T::Addr: Copy,

 T::FfiLength: Copy,

 T::Addr: Copy,

[src]

impl<T: CompressedCapability> Eq for CcxCap<T> [src]

impl<T> RefUnwindSafe for CcxCap<T>
where

 <T as CompressedCapability>::Addr: RefUnwindSafe,

 <T as CompressedCapability>::FfiLength: RefUnwindSafe,

impl<T> Send for CcxCap<T>

☰

70

Blanket Implementations

where

 <T as CompressedCapability>::Addr: Send,

 <T as CompressedCapability>::FfiLength: Send,

impl<T> Sync for CcxCap<T>
where

 <T as CompressedCapability>::Addr: Sync,

 <T as CompressedCapability>::FfiLength: Sync,

impl<T> Unpin for CcxCap<T>
where

 <T as CompressedCapability>::Addr: Unpin,

 <T as CompressedCapability>::FfiLength: Unpin,

impl<T> UnwindSafe for CcxCap<T>
where

 <T as CompressedCapability>::Addr: UnwindSafe,

 <T as CompressedCapability>::FfiLength: UnwindSafe,

[−] impl<T> Any for T
where

 T: 'static + ?Sized,

[src]

[−] impl<T> Borrow<T> for T
where

 T: ?Sized,

[src]

[−] impl<T> BorrowMut<T> for T
where

 T: ?Sized,

[src]

[−] impl<T> From<T> for T [src]

[−] impl<T, U> Into<U> for T
where

 U: From<T>,

[src]

[−] impl<T> ToOwned for T
where

 T: Clone,

[src]

type Owned = T

The resulting type a�er obtaining ownership.

[−] impl<T, U> TryFrom<U> for T
where

 U: Into<T>,

[src]

type Error = Infallible

The type returned in the event of a conversion error.

☰

71

[−] impl<T, U> TryInto<U> for T
where

 U: TryFrom<T>,

[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

☰

72

Trait CompressedCapability

Trait rust_cheri_compressed_cap::CompressedCapability ⎘

Associated Types

pub trait CompressedCapability: Sized + Copy + Clone {

 type Length: NumType + From<Self::Addr>;

 type Offset: NumType + From<Self::Addr>;

 type Addr: NumType + Into<Self::Offset> + Into<Self::Length>;

 type FfiLength: FfiNumType<Self::Length>;

 type FfiOffset: FfiNumType<Self::Offset>;

Show associated constants and methods

}

[+]

Trait defining an Rust version of the public API for a specific capability type. A type X

implementing CompressedCapability is equivalent to the API provided by

cheri_compressed_cap_X.h in C, where ccx_cap_t is equivalent to CcxCap.

It is not recommended to call the trait functions directly. Instead, use one of the

crate::wrappers.

type Length: NumType + From<Self::Addr> [src]

ccx_length_t Rust-land equivalent - should be a superset of Addr

type Offset: NumType + From<Self::Addr> [src]

ccx_offset_t Rust-land equivalent - should be a superset of Addr

type Addr: NumType + Into<Self::Offset> + Into<Self::Length> [src]

ccx_addr_t equivalent

type FfiLength: FfiNumType<Self::Length> [src]

ccx_length_t C-land equivalent - should have a memory layout identical to the C

ccx_length_t. This is separate from Length because for 128-bit types the Rust and C

versions may not look the same. In practice, we just assume they are the same (see

crate::c_funcs documentation).

type FfiOffset: FfiNumType<Self::Offset> [src]

ccx_offset_t C-land equivalent - should have a memory layout identical to the C

☰

73

Associated Constants

Required methods

ccx_offset_t. See Self::FfiLength for an explanation.

const PERM_GLOBAL: u32 [src]

CCX_PERM_GLOBAL equivalent These are the same for 64 and 128bit, but should be

overridden for Morello-128

const PERM_EXECUTE: u32 [src]

const PERM_LOAD: u32 [src]

const PERM_STORE: u32 [src]

const PERM_LOAD_CAP: u32 [src]

const PERM_STORE_CAP: u32 [src]

const PERM_STORE_LOCAL: u32 [src]

const PERM_SEAL: u32 [src]

const PERM_CINVOKE: u32 [src]

const PERM_UNSEAL: u32 [src]

const PERM_ACCESS_SYS_REGS: u32 [src]

const PERM_SETCID: u32 [src]

const MAX_REPRESENTABLE_OTYPE: u32 [src]

const OTYPE_UNSEALED: u32 [src]

CCX_OTYPE_UNSEALED equivalent

const OTYPE_SENTRY: u32 [src]

const OTYPE_RESERVED2: u32 [src]

const OTYPE_RESERVED3: u32 [src]

const MAX_UNRESERVED_OTYPE: u32 [src]

fn compress_raw(src_cap: &CcxCap<Self>) -> Self::Addr [src]

Generate the pesbt bits for a capability (the top bits, which encode permissions, object

type, compressed bounds, etc.) This transformation can be undone with

☰

74

Self::decompress_raw.

This is presumably intended for storing compressed capabilities in e.g. registers. Its

counterpart for storing compressed capabilities in memory is Self::compress_mem.

fn decompress_raw(

 pesbt: Self::Addr,

 cursor: Self::Addr,

 tag: bool

) -> CcxCap<Self>

[src]

Decompress a (pesbt, cursor) pair into a capability. This transformation can be undone

with Self::compress_raw.

fn compress_mem(src_cap: &CcxCap<Self>) -> Self::Addr [src]

Generate the pesbt bits for a capability (the top bits, which encode permissions, object

type, compressed bounds, etc.) This transformation can be undone with

Self::decompress_mem.

This is presumably intended for storing compressed capabilities in memory. It is

equivalent to calling Self::compress_raw and XOR-ing the result with a “null mask”.

Presumably this transformation prevents all-zero data from being interpreted as a

capability?

fn decompress_mem(

 pesbt: Self::Addr,

 cursor: Self::Addr,

 tag: bool

) -> CcxCap<Self>

[src]

Decompress a (pesbt, cursor) pair into a capability. This transformation can be undone

with Self::compress_mem.

This is equivalent to XOR-ing the pesbt with a “null mask” and calling

Self::decompress_raw. Presumably the null mask prevents all-zero data from being

interpreted as a capability?

fn get_uperms(cap: &CcxCap<Self>) -> u32 [src]

Gets the user/so�ware-defined permissions from the CcxCap::cr_pesbt field

Counterpart: Self::update_uperms

fn get_perms(cap: &CcxCap<Self>) -> u32 [src]

Gets the hardware-defined permissions from the CcxCap::cr_pesbt field

Counterpart: Self::update_perms

fn get_otype(cap: &CcxCap<Self>) -> u32 [src]

Gets the object type from the CcxCap::cr_pesbt field

☰

75

Counterpart: Self::update_otype

fn get_reserved(cap: &CcxCap<Self>) -> u8 [src]

Gets the reserved bits from the CcxCap::cr_pesbt field

Counterpart: Self::update_reserved

fn get_flags(cap: &CcxCap<Self>) -> u8 [src]

Gets the flags from the CcxCap::cr_pesbt field

Counterpart: Self::update_flags

fn update_uperms(cap: &mut CcxCap<Self>, value: u32) [src]

Updates the user/so�ware-defined permissions field in CcxCap::cr_pesbt

Counterpart: Self::get_uperms

fn update_perms(cap: &mut CcxCap<Self>, value: u32) [src]

Updates the hardware-defined permissions field in CcxCap::cr_pesbt

Counterpart: Self::get_perms

fn update_otype(cap: &mut CcxCap<Self>, value: u32) [src]

Updates the object type field in CcxCap::cr_pesbt

Counterpart: Self::get_otype

fn update_reserved(cap: &mut CcxCap<Self>, value: u8) [src]

Updates the reserved field in CcxCap::cr_pesbt

Counterpart: Self::get_reserved

fn update_flags(cap: &mut CcxCap<Self>, value: u8) [src]

Updates the flags field in CcxCap::cr_pesbt

Counterpart: Self::get_flags

fn extract_bounds_bits(pesbt: Self::Addr) -> CcxBoundsBits [src]

Extracts the floating-point encoded bounds from CcxCap::cr_pesbt

fn set_bounds(

 cap: &mut CcxCap<Self>,

 req_base: Self::Addr,

 req_top: Self::Length

) -> bool

[src]

Sets the capability bounds to bounds that encompass (req_base, req_top). Because a

floating-point representation is used for bounds, it may not be able to set (req_base,

☰

76

Implementors

req_top) exactly. In this case it will return False.

Updates CcxCap::cr_pesbt, CcxCap::_cr_top, CcxCap::cr_base

fn is_representable_cap_exact(cap: &CcxCap<Self>) -> bool [src]

Check if the range (CcxCap::cr_base, CcxCap::_cr_top) can be encoded exactly with the

floating-point encoding

fn is_representable_new_addr(

 sealed: bool,

 base: Self::Addr,

 length: Self::Length,

 cursor: Self::Addr,

 new_cursor: Self::Addr

) -> bool

[src]

Check if a capability with the parameters sealed, base, length, cursor would

be representable if the cursor were updated to new_cursor .

fn make_max_perms_cap(

 base: Self::Addr,

 cursor: Self::Addr,

 top: Self::Length

) -> CcxCap<Self>

[src]

Generate a capability for base, top, cursor with the maximum available

permissions

fn get_representable_length(length: Self::Length) ->

Self::Length

[src]

Get the minimum representable length greater than or equal to length .

If get_representable_length(l) == l then bounds of length l are exactly

representable (if properly aligned).

See also Self::get_required_alignment, Self::get_alignment_mask.

fn get_required_alignment(length: Self::Length) -> Self::Length [src]

Get the alignment required for bounds of some length to be exactly represented.

See also Self::get_representable_length, Self::get_alignment_mask.

fn get_alignment_mask(length: Self::Length) -> Self::Length [src]

Get a mask which aligns a bounds of some length to be exactly representable.

See also Self::get_representable_length, Self::get_required_alignment.

☰

77

[−] impl CompressedCapability for Cc64 [src]

type Length = u64

type Offset = i64

type Addr = u32

type FfiLength = u64

type FfiOffset = i64

const MAX_REPRESENTABLE_OTYPE: u32 [src]

_CC_N(OTYPE_UNSEALED_SIGNED) = (((int64_t)-1) - 0u)```

The OTYPE field is 4 bits (50:47) in CC64

[−] impl CompressedCapability for Cc128 [src]

type Length = u128

type Offset = i128

type Addr = u64

type FfiLength = u128

type FfiOffset = i128

const MAX_REPRESENTABLE_OTYPE: u32 [src]

The OTYPE field is 18 bits (108:91) in CC128

☰

78

APPENDIXB

Code Snippets

This appendix contains code snippets referenced in the document. Some small snippets include
comparison to generated assembly, which is extracted using godbolt.org. The full codebases
are available online at theturboturnip/riscv-v-lite onGithub and theturboturnip/cheri-
compressed-cap on Github, and attached to the submission.

79

godbolt.org
https://github.com/theturboturnip/riscv-v-lite
https://github.com/theturboturnip/cheri-compressed-cap
https://github.com/theturboturnip/cheri-compressed-cap

B.1 C example — Basic RVV program

This a reproduction of https://github.com/riscv-non-isa/rvv-intrinsic-doc/blob/
master/examples/rvv_memcpy.c, with annotations to mirror the steps from Section 4.1.3.

#include <riscv_vector.h>

void *memcpy_vec(void *dst, void *src, size_t n) {
void *save = dst;
// copy data byte by byte
for (size_t vl; n > 0; n -= vl, src += vl, dst += vl) {

// Use a vsetvl intrinsic to get the
// vector length for this iteration.
vl = vsetvl_e8m8(n);

// Allocate vector registers by declaring
// variables with vector types
vuint8m8_t vec_src;

// Pass the vector length to intrinsics
vec_src = vle8_v_u8m8(src, vl);
vse8_v_u8m8(dst, vec_src, vl);

}
return save;

}

80

https://github.com/riscv-non-isa/rvv-intrinsic-doc/blob/master/examples/rvv_memcpy.c
https://github.com/riscv-non-isa/rvv-intrinsic-doc/blob/master/examples/rvv_memcpy.c

B.2 C example — Saving/restoring vector registers

This is an example of a compiler generating code to save/restore vector registers before/after
calling another function. Generated from Clang 15 — output availble from https://godbolt.
org/z/4xfMoxsT7

81

https://godbolt.org/z/4xfMoxsT7
https://godbolt.org/z/4xfMoxsT7

Figure B.1: Saving/restoring vector registers

(a) C code

void some_other_function();

void vector_memcpy(
size_t n,
const uint16_t* in,
uint16_t* out

) {
size_t vl =
vsetvl_e16m8(n);

vuint16m8_t data =
vle16_v_u16m8(in, vl);
some_other_function();
vse16_v_u16m8(
out, data, vl
);

}

(b) Generated assembly

vector_memcpy:
Preamble

addi sp, sp, -64
sd ra, 56(sp)
sd s0, 48(sp)
sd s1, 40(sp)

Allocate stack for VLEN*8
csrr a3, vlenb
slli a3, a3, 3
sub sp, sp, a3

size_t vl = vsetvl_e16m8(n);
vsetvli s1, a0, e16, m8, ta, mu

vuint16m8_t data = ...;
vle16.v v8, (a1)

Save data to stack
addi a0, sp, 32
vs8r.v v8, (a0)
mv s0, a2

some_other_function();
call some_other_function@plt

Reload data from stack
vsetvli zero, s1, e16, m8, ta,

mu↪→

addi a0, sp, 32
vl8re8.v v8, (a0)

vse16_v_u16m8(...);
vse16.v v8, (s0)

Postamble, deallocate VLEN*8
csrr a0, vlenb
slli a0, a0, 3
add sp, sp, a0
ld ra, 56(sp)
ld s0, 48(sp)
ld s1, 40(sp)
addi sp, sp, 64
ret

82

B.3 C example — Arm SVE

This section shows how to use Arm SVE in C, in various ways. The output is compiled with
the latest GCC (Clang also supports Arm SVE, but generates longer output). Output for GCC
and Clang is available at https://godbolt.org/z/8edWMscfP.

Figure B.2: Arm SVE — Autovectorization

void test_auto_vector(int64_t* data, int64_t n) {
for (int i = 0; i < n; i++) {

data[i] += 1;
}

}

(a) C code

test_auto_vector:
cmp x1, 0
ble .L1
mov w3, w1
mov x2, 0
cntd x4
whilelo p0.d, wzr, w1

.L3:
ld1d z0.d, p0/z, [x0, x2, lsl 3]
add z0.d, z0.d, #1
st1d z0.d, p0, [x0, x2, lsl 3]
add x2, x2, x4
whilelo p0.d, w2, w3
b.any .L3

.L1:
ret

(b) Generated assembly

83

https://godbolt.org/z/8edWMscfP

Figure B.3: Arm SVE — Intrinsics

void test_intrinsics_sve(int64_t* data, int64_t n) {
if (n == 0) return;
int64_t i = 0;
svbool_t pg = svwhilelt_b64(i, n);
svint64_t one = svdup_s64(1);
do {

svint64_t d_vec = svld1(pg, &data[i]);
svst1(pg, &data[i], svadd_z(pg, d_vec, one));
i += svcntd();
pg = svwhilelt_b64(i, n);

}
while (svptest_any(svptrue_b64(), pg));

}

(a) C code

test_intrinsics_sve:
cbz x1, .L6
mov x2, 0
cntd x3
whilelt p0.d, xzr, x1
mov z1.d, #1

.L8:
ld1d z0.d, p0/z, [x0, x2, lsl 3]
movprfx z0.d, p0/z, z0.d
add z0.d, p0/m, z0.d, z1.d
st1d z0.d, p0, [x0, x2, lsl 3]
add x2, x2, x3
whilelt p0.d, x2, x1
b.any .L8

.L6:
ret

(b) Generated assembly

84

Figure B.4: Arm SVE — Inline Assembly

void test_asm_sve(int64_t* data, int64_t n) {
if (n == 0) return;
int64_t i = 0;

asm ("whilelt p0.d, %0, %1" :: "r"(i), "r"(n));
asm ("mov z0.d, #1");
asm("loop:");
{

// svint64_t d_vec = svld1(pg, &data[i]);
// Load data[i] -> z1.d, where i = 64-bit index (3 bit shift

up from 8-bit)↪→

asm ("ld1d z1.d, p0/z, [%0, %1, lsl #3]" :: "r"(data),
"r"(i));↪→

// Add z1 + z0, storing the results in z1, where p0/Masks the
addition↪→

asm ("add z1.d, p0/m, z1.d, z0.d");
asm ("st1d z1.d, p0, [%0, %1, lsl #3]" :: "r"(data), "r"(i) :

"memory");↪→

// svst1(pg, &data[i], svadd_z(pg, d_vec, one));
i += svcntd();
// This sets the Z flag to 1 if nothing is left
asm ("whilelt p0.d, %0, %1" :: "r"(i), "r"(n));
// b.ne = Not Equal = (if Z flag is 0)
// if Z flag is 0 i.e. something is left, jump to loop
asm ("b.ne loop");

}
}

(a) C code

test_asm_sve:
cbz x1, .L13
mov x2, 0
whilelt p0.d, x2, x1
mov z0.d, #1

loop:
ld1d z1.d, p0/z, [x0, x2, lsl #3]
add z1.d, p0/m, z1.d, z0.d
st1d z1.d, p0, [x0, x2, lsl #3]
cntd x0
whilelt p0.d, x0, x1
b.ne loop

.L13:
ret

(b) Generated assembly

85

B.4 riscv-v-lite — Vector memory accesses

/// Converts a decoded memory operation to the list of accesses it performs.
fn get_load_store_accesses(&mut self, rd: u8,

addr_p: (u64, Provenance),
rs2: u8, vm: bool, op: DecodedMemOp)
-> Result<Vec<(VectorElem, u64)>> {

// Vector of (VectorElem, Address)
let mut map = vec![];

let (base_addr, _) = addr_p;

use DecodedMemOp::*;
match op {

Strided{stride, evl, nf, eew, emul, ..} => {
// For each segment
for i_segment in self.vstart..evl {

let seg_addr = base_addr + (i_segment as u64 * stride);

// If we aren't masked out...
if !self.vreg.seg_masked_out(vm, i_segment) {
// For each field
let mut field_addr = seg_addr;
for i_field in 0..nf {
// ... perform the access
let vec_elem = VectorElem::check_with_lmul(
// Register group start
// For field 0, = rd
// For field 1, = rd + (number of registers/group)
// etc.
rd + (i_field * emul.num_registers_consumed()),
eew, emul,
// Element index within register group
i_segment

);
map.push((vec_elem, field_addr));
// and increment the address

86

field_addr += eew.width_in_bytes();
}

}
}

}
FaultOnlyFirst{evl, nf, eew, emul} => {
// We don't handle the exceptions here
// This just lists the accesses that will be attempted
// This is exactly the same code as for Strided, but it

calculates the stride↪→

let stride = eew.width_in_bytes() * (nf as u64);

// For each segment
for i_segment in self.vstart..evl {

let seg_addr = base_addr + (i_segment as u64 * stride);

// If we aren't masked out...
if !self.vreg.seg_masked_out(vm, i_segment) {
// For each field
let mut field_addr = seg_addr;
for i_field in 0..nf {
// ... perform the access
let vec_elem = VectorElem::check_with_lmul(
rd + (i_field * emul.num_registers_consumed()),
eew, emul,
i_segment

);
map.push((vec_elem, field_addr));
// and increment the address
field_addr += eew.width_in_bytes();

}
}

}
}
Indexed{index_ew, evl, nf, eew, emul, ..} => {
// i = element index in logical vector (which includes groups)
for i_segment in self.vstart..evl {

87

// Get our index
let seg_offset = self.vreg.load_vreg_elem_int(index_ew, rs2,

i_segment)?;↪→

let seg_addr = base_addr + seg_offset as u64;

// If we aren't masked out...
if !self.vreg.seg_masked_out(vm, i_segment) {
// For each field
let mut field_addr = seg_addr;
for i_field in 0..nf {
// ... perform the access
let vec_elem = VectorElem::check_with_lmul(
rd + (i_field * emul.num_registers_consumed()),
eew, emul,
i_segment

);
map.push((vec_elem, field_addr));
// and increment the address
field_addr += eew.width_in_bytes();

}
}

}
}
WholeRegister{num_regs, eew, ..} => {

if vm == false {
// There are no masked variants of this instruction
bail!("WholeRegister operations cannot be masked")

}

let mut addr = base_addr;
let vl = op.evl();
// For element in register set...
for i in self.vstart..vl {

// ...perform the access
let vec_elem = VectorElem::check_with_num_regs(
rd,
eew, num_regs,

88

i as u32
);
map.push((vec_elem, addr));
addr += eew.width_in_bytes();

}
}
ByteMask{evl, ..} => {

if vm == false {
// vlm, vsm cannot be masked out
bail!("ByteMask operations cannot be masked")

}

let mut addr = base_addr;
// evl = number of 8-bit elements required for the mask
// self.vstart = in terms of bytes
for i in self.vstart..evl {

let vec_elem = VectorElem::check_with_lmul(
rd,
Sew::e8, Lmul::e1,
i

);
map.push((vec_elem, addr));
addr += 1;

}
}

};

Ok(map)
}

89

APPENDIXC

Fast path vector checks

This appendix describes methods of calculating tight bounds for vector memory accesses
(Section 3.1.2.2) and ways that architectural complexity can be traded off to calculate wider
bounds. These methods calculate the entire bounds up front, and while they are used in the
emulator a hardware implementation may find it introduces too much latency.

C.1 Masked accesses

For all masked accesses, masked-out/inactive segments should not trigger capability exceptions.
Therefore, a tight bounds must include only the smallest and largest active segments. These
segments can be found by inspecting the mask vector: either checking each bit in turn or using
parallel logic to find the lowest/highest set bits. Care must be taken with these checks to ensure
elements outside the range [vstart, evl) are not counted.

vstartactive = min(i ∀ vstart ≤ i < evl where mask[i] = 1) (C.1.1)

evlactive = max(i ∀ vstart ≤ i < evl where mask[i] = 1) + 1 (C.1.2)

Tradeoffs

If using parallel logic to find the lowest/highest bits, it could be difficult to account for
[vstart, evl). An implementation could choose to only calculate tight bounds when the mask is
fully utilized, i.e. vstart = 0, evl = VLEN, and assume wider bounds otherwise.

Accounting for masked accesses at all may not be worth the extra complexity. Only elements
masked off on the edges make any difference, and it may be uncommon for long runs of edge
elements to be masked off. Thus, an implementation could choose to ignore masking entirely
when computing the ranges. This does mean that all failures become Likely-Failure when
masking is enabled, because all elements outside the capability bounds may be masked off.

90

C.2 Unit accesses

For unit segmented accesses, which includes fault-only first, the tight address range for an
access is simple to calculate. Whole register and bytemask accesses can simplify this by fixing
nf = 1 and eew = 8.

base + [vstartactive ∗ nf ∗ eew, evlactive ∗ nf ∗ eew) (C.2.1)

Tradeoffs

nf is not guaranteed to be a power of two (except for the whole-register case), so calculating
the ‘tight’ address range would require a multiplication by an arbitrary four-bit value between
1 and 8. If this multiplication is too expensive, implementations could choose to classify all
nf > 1 cases as Unchecked.

Unless extra restrictions are placed on vstart, calculating the start of this range requires
another arbitrary multiplication. To avoid this one could assume vstart = 0 and treat failures
as Likely-Failure for other cases. Once could also classify all nonzero vstart accesses as
Unchecked.

Even if the previous two optimizations are applied, the final range still requires a multiplic-
ation evl ∗ eew. Thankfully, because eew may only be one of four powers-of-two, this can be
encoded as a simple shift.

C.3 Strided accesses

Strided accesses bring further complication, especially as the stride may be negative.

base +

 [vstartactive ∗ stride, (evlactive − 1) ∗ stride + nf ∗ eew) stride ≥ 0
[(evlactive − 1) ∗ stride, vstartactive ∗ stride + nf ∗ eew) stride < 0

(C.3.1)
This is formed of three components:

• vstartactive ∗ stride, the start of the first segment. This can be simplified to 0, just like
for unit accesses, to avoid an arbitrary multiplication.

• (evlactive − 1) ∗ stride, the start of the final segment. This requires an arbitrary
multiplication, unless strided accesses are all Unchecked.

• nf ∗ eew, the length of a segment, which can be implemented with a shift.

91

C.4 Indexed accesses

This is the most complicated access of the bunch, because the addresses cannot be computed
without reading the index register.

[base + min(offsets[vstartactive..evlactive]), (C.4.1)

base + max(offsets[vstartactive..evlactive]) + nf ∗ eew) (C.4.2)

The most expensive components here are of course min, max of the offsets. These
could be calculated in hardware through parallel reductions, making it slightly more effi-
cient than looping over each element. A low-hanging optimization could be to remove the
vstartactive..evlactive range condition, performing the reduction over the whole register group,
which would make failures Likely-Failure where vstartactive ! = 0 || evlactive ! = VLMAX. This
calculation could also be restricted to certain register configurations to reduce the amount
of required hardware. Indeed, the amount of hardware could be reduced to zero by simply
classifying all indexed accesses as Unchecked.

92

APPENDIXD

Compiler information

D.1 Vanilla RVV command-line options

Compiler Required Arguments Notes

Clang-13 -march=rv64gv0p10 Supports intrinsics, inline assembly
for RVV v0.1-menable-experimental-extensions

Clang-14+ -march=rv64gv Supports intrinsics, inline assembly
for RVV v1.0

GCC 10.1 -march=rv64g_v Requires special toolchain (see Ap-
pendix D.5) and has incomplete sup-
port (see Appendix D.3)

Table D.1: Command-line arguments for compiling RVV code on non-CHERI compilers
(assuming the base ISA is rv64g)

D.2 CHERI-RVV command-line options

Compiler Required Arguments Notes

CHERI -march=rv64gv0p10xcheri Supports intrinsics, inline assembly
for RVV v0.1Clang-13 -menable-experimental-extensions

-mabi=l64pc128 ABI string sets capability width.
-mno-relax Must disable linker relaxations.

Table D.2: Command-line arguments for compiling CHERI-RVV code
(assuming the base ISA is rv64g)

By default CHERI-Clang doesn’t actually compile capability-enabled code. The docu-
mentation on enabling capabilities is unfortunately sparse and outdated. In particular, the

93

CHERI-Clang help menu states that --cheri will “Enable CHERI support with the default
capability size”, but this has no effect (at least on RISC-V). To find up-to-date answers, we
consulted the source code for the CHERIbuild build tool1.

CHERIbuild’s code2 revealed three requirements:

• The architecture string must contain xcheri

• The capability length must be set using the ABI string

– In pure-capability mode, pointers and capabilities are CLEN long

∗ Example string: l64pc128

∗ Integer width (long, or l) = XLEN = 64-bits

∗ Pointer width (p) = Capability width (p) = CLEN = 128-bits

– For hybrid mode, pointers remain XLEN long and capability length is not specified

∗ Example string: lp32

∗ Integer width (l) = XLEN = Pointer width (p) = 32-bits

• “Linker relaxations”, where function calls are converted to short jumps[31], must be
disabled.

– This is likely because CHERI requires function calls to go through capabilities

– However the code that adds this option wasn’t documented, so there may be more
to it

Once the above options are set, plain CHERI-RISC-V code compiles without a hitch. Changes
to CHERI-Clang itself are required to compile vectors (Section 4.2.1).

D.3 Compiler support for RVV

While most compilers support all memory access archetypes, there are a few notable exceptions.
GCC has the most: there is no support for fractional LMUL or bytemask accesses, the intrinsics
for segmented accesses are named differently, and fault-only-first intrinsics emit incorrect
instructions3. GCC RVV support has been deprioritized in favor of LLVM4, so the rough
edges make sense. LLVM-13-based compilers (including CHERI-Clang) support all specified
archetypes except bytemask accesses. CHERI-Clang doesn’t support intrinsics, but all inline
assembly support is intact. Support for bytemask accesses is only available in LLVM-14 and up.

1CSTRD-CHERI/cheribuild on Github
2config/compilation_targets.py:176 in CSTRD-CHERI/cheribuild on GitHub
3On GCC, fault-only-first intrinsics seem to emit vsetvli.
4https://github.com/riscv-collab/riscv-gcc/issues/320

94

https://github.com/CTSRD-CHERI/cheribuild
https://github.com/CTSRD-CHERI/cheribuild/blob/ba3a0b6388436224968c906192c61d2ccbdd7616/pycheribuild/config/compilation_targets.py#L176
https://github.com/riscv-collab/riscv-gcc/issues/320

D.4 Ensuring compatibility between different compilers

The vector_memcpy test program uses the preprocessor to identify the current compiler and
how that compiler supports various vector instructions. It is reproduced here in case it can be
useful for other vector-agnostic programs.

#define ASM_PREG(val) "r"(val)
// GCC doesn't like __has_feature(capabilities), so define a

convenience value↪→

// which is only 1 when in LLVM with __has_feature(capabilities)
#define HAS_CAPABILITIES 0

// Patch over differences between GCC, clang, and CHERI-clang
#if defined(__llvm__)
// Clang intrinsics are correct for segmented loads,
// and supports fractional LMUL.
// Clang 14+ has the correct intrinsics for bytemask loads,
// and Clang has been tested with wholereg ASM

// Use intrinsics for BYTEMASK in newer Clangs,
// otherwise the intrinsics don't exist
#if __clang_major__ >= 14

#define ENABLE_BYTEMASK 1
#define USE_ASM_FOR_BYTEMASK 0

#else
// LLVM 13 does not support bytemask
#define ENABLE_BYTEMASK 0

#endif

#if __has_feature(capabilities)
#undef HAS_CAPABILITIES
#define HAS_CAPABILITIES 1

#if __has_feature(pure_capabilities)
#undef ASM_PREG
#define ASM_PREG(val) "C"(val)

#endif

95

// Enable everything
#define ENABLE_UNIT 1
#define ENABLE_STRIDED 1
#define ENABLE_INDEXED 1
#define ENABLE_MASKED 1
#define ENABLE_SEGMENTED 1
#define ENABLE_FRAC_LMUL 1
#define ENABLE_ASM_WHOLEREG 1
#define ENABLE_FAULTONLYFIRST 1
// BYTEMASK is disabled above

// Use ASM for everything
#define USE_ASM_FOR_UNIT 1
#define USE_ASM_FOR_STRIDED 1
#define USE_ASM_FOR_INDEXED 1
#define USE_ASM_FOR_MASKED 1
#define USE_ASM_FOR_SEGMENTED 1
// Wholereg has no intrinsics, always ASM
#define USE_ASM_FOR_FAULTONLYFIRST 1

#else
// Enable everything
#define ENABLE_UNIT 1
#define ENABLE_STRIDED 1
#define ENABLE_INDEXED 1
#define ENABLE_MASKED 1
#define ENABLE_SEGMENTED 1
#define ENABLE_FRAC_LMUL 1
#define ENABLE_ASM_WHOLEREG 1
#define ENABLE_FAULTONLYFIRST 1

// Use intrinsics for everything
#define USE_ASM_FOR_UNIT 0
#define USE_ASM_FOR_STRIDED 0
#define USE_ASM_FOR_INDEXED 0
#define USE_ASM_FOR_MASKED 0
#define USE_ASM_FOR_SEGMENTED 0
// Wholereg has no intrinsics, always ASM

96

#define USE_ASM_FOR_FAULTONLYFIRST 0
#endif

#elif defined(__GNUC__) && !defined(__INTEL_COMPILER)
// GNU exts enabled, not in LLVM or Intel, => in GCC

// GCC from RISC-V toolchain rvv-intrinsics branch
// has incorrect names for segmented intrinsics,
// doesn't support fractional LMUL,
// doesn't support byte-mask,
// emits incorrect code for fault-only-first intrinsics
// (it seems to emit a vsetvli instruction).

// Enable everything except fractional LMUL and bytemask
#define ENABLE_UNIT 1
#define ENABLE_STRIDED 1
#define ENABLE_INDEXED 1
#define ENABLE_MASKED 1
#define ENABLE_SEGMENTED 1
#define ENABLE_FRAC_LMUL 0
#define ENABLE_BYTEMASK 0
#define ENABLE_ASM_WHOLEREG 1
#define ENABLE_FAULTONLYFIRST 1

// Use intrinsics for all except segmented loads
#define USE_ASM_FOR_UNIT 0
#define USE_ASM_FOR_STRIDED 0
#define USE_ASM_FOR_INDEXED 0
#define USE_ASM_FOR_MASKED 0
#define USE_ASM_FOR_SEGMENTED 1
// bytemask is disabled
#define USE_ASM_FOR_BYTEMASK 0
// Wholereg is always ASM
// fault-only-first intrinsics emit the wrong instruction
#define USE_ASM_FOR_FAULTONLYFIRST 1

#endif

97

D.5 Building riscv-gnu-toolchain with vector support

As of May 2022, the RISC-V GNU toolchain (hosted at riscv-collab/riscv-gnu-toolchain
on Github) does not support the vector extension or it’s intrinsics. The rvv-intrinsic branch
of this repository claimed to support vector intrinsics, but it was slightly outdated and has
been deleted as of 17th May 2022. It referenced a repository for glibc that no longer exists
as a submodule, which makes compilation impossible. We have archived this branch online
(theturboturnip/riscv-gnu-toolchain on Github) and fixed that issue. This appendix
describes how to build the toolchain.

To build the full toolchain with intrinsic support, perform the following steps (derived by
the author independently, then amended based on macOS instructions from 5):

1. Clone the repository itself:

$ git clone https://github.com/theturboturnip/riscv-gnu-toolchain

2. Clone the riscv-gcc submodule:

$ git submodule update --init --recursive --progress --force ./riscv-gcc

• On macOS, it may be necessary to disable SSL:

$ git -c http.sslVerify=false submodule ...

3. Configure the compiler so it supports all General extensions, Compressed instructions,
and Vector extension:

$./configure --prefix=<output directory> --with-arch=rv64gcv --with-abi=lp64d

4. Build the newlib version to compile for bare-metal platforms:

$ make newlib -j$(nproc)

5https://github.com/riscv-collab/riscv-gcc/issues/323

98

https://github.com/riscv-collab/riscv-gnu-toolchain/
https://github.com/riscv-collab/riscv-gnu-toolchain/
https://github.com/theturboturnip/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gcc/issues/323

APPENDIX E

CHERI-RVV changes from CHERI and RVV

This appendix summarizes the differences between a CHERI-RVV ISA, as emulated by riscv-
v-lite, and a CHERI-RISC-V ISA with the vanilla RVV extension.

E.1 Loading/storing with capabilities

All CHERI-RISC-V instructions are unchanged. The RVV memory access instructions (listed in
Section 2.5) have their behaviour changed, and all other RVV memory access instructions are
unchanged.

In capability mode, vector memory accesses are changed to use capabilities. The rs1 field
in the encoding for all memory access instructions is changed to cs1, which specifies the
capability register holding the base capability. In integer mode, the value held in register rs1
is added to the DDC to create the base capability. The base capability’s cursor is used as the
base address for all accesses.

The behaviour of each vector memory access is unchanged, except for exception behaviour.
A synchronous exception is raised on element i of width eew at address addr if

• The base capability tag is not set.

• The base capability is sealed.

• The base capability does not have adequate permissions.

– e.g. Permit_Load for loads,

Permit_Store for stores.

• addr < base_capability.base.

• addr + eew > base_capability.top.

99

All other exceptions that would be raised by a vanilla RVV equivalent, e.g. unaligned access
exceptions, are also raised. Fault-only-first loads silently swallow capability-related exceptions
when i > 0, setting vl instead of taking a trap, just like all other synchronous exceptions.

In a future version, it may be desirable for some capability exceptions to trap before any
accesses are attempted. For example, passing a sealed, untagged, or permissionless capability
to a memory access usually reflects a serious programming error, and should not be ignored
in any case. The current emulator would ignore those errors if all elements were masked out,
and would silently swallow them in fault-only-first. Element-specific exceptions, i.e. bounds
violations, should still always be swallowed by fault-only-first.

E.2 Capabilities-in-vectors changes

vsetvl instructions are modified to accept a SEW value mapping to 128-bit elements (Table E.1).
The arithmetic RVV instructions implemented by the emulator, listed in Table E.3, are modified
to handle 128-bit elements. We have not investigated changing any other instructions, but
believe it should be trivial to extend them. The RVV specification notes how some instructions
would handle 128-bit elements, e.g. [2, Chapter 13].

TheRVVmemory access instructions are changed to support a new elementwidth (Table E.2).
This should be supported in all instructions, but was only tested for unit loads and stores. In-
deed, the only instructions added to CHERI-Clang were vle128.v and vse128.v. Memory
access instructions of 128-bit elements are the only instructions that access vector registers in
a capability context.

Of the non-unit loads and stores, indexed memory accesses are potentially concerning.
These accesses use offsets of the vtype-encoded width, so could try to use 128-bit offsets.
Indexed memory accesses have not been tested with 128-bit offsets, and further work is
required to decide how that case should be handled.

SEW vsew[2:0]

8 0 0 0
16 0 0 1
32 0 1 0
64 0 1 1
128new 1 0 0

Table E.1: Selected element width encoding

Access Type mew width[2:0]

Vector(8) 0 0 0 0
Vector(16) 0 1 0 1
Vector(32) 0 1 1 0
Vector(64) 0 1 1 1
Vector(128)new 1 0 0 0

Table E.2: Width encoding for vector loads and
stores

100

vmv.v.v
vmv.v.i
vmerge.vim
vmv<nr>r.v
vmseq.vi
vmsne.vi
vadd.v.i

Table E.3: riscv-v-lite supported arithmetic instructions

E.2.1 Relevant properties

This subsection summarizes the properties of the emulator described in Chapter 5 that enable
capabilities-in-vectors. These properties are not absolute requirements for all capability-in-
vector implementations fulfilling Hypotheses H-7 to H-9, but can be used as a starting point.

• ELEN = 128(+1) i.e. the length of a capability.

– For a program to manipulate, load, and store capability values securely and atomic-
ally, it must be able to operate on appropriately sized logical elements.

• VLEN = 128(+1) i.e. the length of a capability.

– VLEN ≥ ELEN ([2, Chapter 2])

– Larger VLEN could be supported, which must be a power-of-two[2, Chapter 2] and
therefore will be a multiple of the capability length.

• The memory interface is identical to that used by the scalar processor, where each vector
access is split into a set of sequential accesses less than or equal to 128 bits.

– Therefore the safety properties for the scalar code still hold.

– Example: capabilities can only be stored through a capability with the STORE_CAP
permission.

• Capability memory accesses use SafeTaggedCap as a unit.

– This means it is impossible to set the tag bit on invalid capabilities.

– It also means all capability accesses are 128-bit aligned, and atomic.

101

• The only instruction that can place capabilities in a vector register is 128-bit element
loads.

– There are no vectorized capability-to-capability or integer-to-capability instructions,
such as CSetBounds or CFromPtr.

– All other instructions that write to registers (e.g. arithmetic, 64-bit loads, etc.) unset
the tag bit.

– The only way to place a valid capability in a vector register is to copy a valid
capability from memory.

– Therefore the Provenance and Monotonicity properties are always upheld.

• The only 128-bit element vector load instruction is unit-stride.

– Strided and Indexed accesses could be supported as long as they enforced alignment
and atomicity correctly.

– Whole-register accesses would need to be updated to always use 128-bit elements,
in case capabilities are being accessed.

• Capabilities-in-vectors cannot be dereferenced directly.

– Therefore Integrity cannot be violated by vector operations.

102

APPENDIX F

Full test results

F.1 Initial Smoke Tests

Some simple smoke tests were constructed to test the basic functionality of the emulator,
particularly under CHERI. hello_world runs three small functions which calculate Fibonacci
numbers and factorials. Fibonacci is calculated with a simple recursive function, and with
memoization where previous outputs are cached in a static array. The tests compile on all
compilers, and output the correct results on all architectures.

RV32 RV-64

llvm-13 llvm-13 llvm-15 gcc CHERI CHERI (Int)

factorial(10) Y Y Y Y Y Y
fib(10) (recursive) Y Y Y Y Y Y
fib(33) (memoized) Y Y Y Y Y Y

Table F.1: hello_world results — Basic program tests

F.2 vector_memcpy

The scope of this test, including testing many permutations of vtype, meant the full table
couldn’t be included in the main paper.

103

Table F.2: Results — Vectorized memcpy

RV32 RV-64

llvm-13 llvm-13 llvm-15 gcc CHERI CHERI (Int)

Unit Stride e8m1 Y Y Y Y Y Y
Unit Stride e16m2 Y Y Y Y Y Y
Unit Stride e32m4 Y Y Y Y Y Y
Unit Stride e64m8 Y Y Y Y Y Y
Unit Stride e32mf2 Y Y Y - Y Y
Unit Stride e16mf4 Y Y Y - Y Y
Unit Stride e8mf8 Y Y Y - Y Y

Strided e8m1 Y Y Y Y Y Y
Strided e16m2 Y Y Y Y Y Y
Strided e32m4 Y Y Y Y Y Y
Strided e64m8 Y Y Y Y Y Y
Strided e32mf2 Y Y Y - Y Y
Strided e16mf4 Y Y Y - Y Y
Strided e8mf8 Y Y Y - Y Y
Indexed e8m1 Y Y Y Y Y Y

Indexed e16m2 Y Y Y Y Y Y
Indexed e32m4 Y Y Y Y Y Y
Indexed e64m8 Y Y Y Y Y Y
Indexed e32mf2 Y Y Y - Y Y
Indexed e16mf4 Y Y Y - Y Y
Indexed e8mf8 Y Y Y - Y Y

Unit Stride Masked e8m1 Y Y Y Y Y Y
Unit Stride Masked e16m2 Y Y Y Y Y Y
Unit Stride Masked e32m4 Y Y Y Y Y Y
Unit Stride Masked e64m8 Y Y Y Y Y Y
Unit Stride Masked e32mf2 Y Y Y - Y Y
Unit Stride Masked e16mf4 Y Y Y - Y Y
Unit Stride Masked e8mf8 Y Y Y - Y Y

Bytemask Load e8m1 - - Y - - -
Bytemask Load e16m2 - - Y - - -
Bytemask Load e32m4 - - Y - - -
Bytemask Load e64m8 - - Y - - -
Bytemask Load e32mf2 - - Y - - -

104

Table F.2: Results — Vectorized memcpy

RV32 RV-64

llvm-13 llvm-13 llvm-15 gcc CHERI CHERI (Int)

Bytemask Load e16mf4 - - Y - - -
Bytemask Load e8mf8 - - Y - - -

Unit Stride Segmented e8m2 Y Y Y Y Y Y
Unit Stride Segmented e16m2 Y Y Y Y Y Y
Unit Stride Segmented e32m2 Y Y Y Y Y Y
Unit Stride Segmented e64m2 Y Y Y Y Y Y
Unit Stride Segmented e32mf2 Y Y Y - Y Y

Whole-Register e64m1 Y Y Y Y Y Y
Whole-Register e64m2 Y Y Y Y Y Y
Whole-Register e64m4 Y Y Y Y Y Y
Whole-Register e64m8 Y Y Y Y Y Y

FoF Memcpy e8m1 Y Y Y Y Y Y
FoF Memcpy e16m2 Y Y Y Y Y Y
FoF Memcpy e32m4 Y Y Y Y Y Y
FoF Memcpy e64m8 Y Y Y Y Y Y
FoF Memcpy e32mf2 Y Y Y - Y Y
FoF Memcpy e16mf4 Y Y Y - Y Y
FoF Memcpy e8mf8 Y Y Y - Y Y
FoF Boundary e8m1 Y Y Y Y Y Y

FoF Boundary e16m2 Y Y Y Y Y Y
FoF Boundary e32m4 Y Y Y Y Y Y
FoF Boundary e64m8 Y Y Y Y Y Y
FoF Boundary e32mf2 Y Y Y - Y Y
FoF Boundary e16mf4 Y Y Y - Y Y
FoF Boundary e8mf8 Y Y Y - Y Y

105

F.3 vector_memcpy_pointers

This is already referenced in the main paper (Section 5.2) and included here for completeness.

RV32 RV-64

llvm-13 llvm-13 llvm-15 gcc CHERI CHERI (Int)

Copy Y Y Y Y Y Y
Copy + Invalidate - - - - Y Y

106

APPENDIXG

Artifacts

riscv-v-lite

RISC-V ISA emulator and test programs, written from scratch.

Online source code: theturboturnip/riscv-v-lite on Github

Online documentation: Documentation

Source code and documentation are also included with the submission.

rust-cheri-compressed-cap

Rust wrapper for C capability library, written from scratch.

Online source code: theturboturnip/cheri-compressed-cap on Github

Online documentation: Documentation

Source code and documentation are also included with the submission.

CHERI-Clang fork

LLVM-13-based compiler for CHERI, with changes to make it compatible with RVV.

Online source code: theturboturnip/llvm-project (cheri-vectors) on Git-
hub

The modified source code files are also included with the submission.

Online diff, to show our changes: Diff of cheri-vectors vs. master on GitHub

An offline diff is also included with the submission as VECTOR.diff.

107

https://github.com/theturboturnip/riscv-v-lite
https://theturboturnip.github.io/files/doc/rsim/index.html
https://github.com/theturboturnip/cheri-compressed-cap/tree/master/test/rust-cheri-compressed-cap
https://theturboturnip.github.io/files/doc/rust_cheri_compressed_cap/index.html
https://github.com/theturboturnip/llvm-project/tree/cheri-vectors
https://github.com/theturboturnip/llvm-project/tree/cheri-vectors
https://github.com/CTSRD-CHERI/llvm-project/compare/master...theturboturnip:cheri-vectors

	Introduction
	Motivation
	Hypotheses and Aims

	Background
	RISC-V
	A brief history of vector processing
	The RVV vector model
	vtype
	vl and vstart — Prestart, body, tail
	Masking — Active/inactive elements
	Exception handling
	Imprecise vector traps
	Precise vector traps
	Other modes

	Summary

	Previous RVV implementations
	RVV memory instructions
	Unit and Strided accesses
	Unit fault-only-first loads
	Indexed accesses
	Unit whole-register accesses
	Unit bytemask accesses

	CHERI
	CHERI-RISC-V ISA
	Instruction changes
	Capability and Integer encoding mode
	Pure-capability and Hybrid compilation modes
	Capability relocations

	Hardware emulation investigation
	Developing the emulator
	Emulating CHERI
	rust-cheri-compressed-cap
	Integrating into the emulator

	Emulating vectors
	Decoding phase
	Fast-path checking phase
	Execution phase
	Integer vs. Capability encoding mode

	Fast-path calculations
	Possible fast-path outcomes
	Whole-access fast-paths
	m-element known-range fast-paths

	Going beyond the emulator
	Misaligned accesses
	Atomicity of accesses/General memory model
	Relaxed access ordering and precise traps

	Testing and evaluation
	Hypothesis H-1 - Feasibility
	Hypothesis H-2 - Fast-path checks

	The CHERI-RVV software stack
	Compiling vector code
	Available compilers
	Automatic vectorization
	Vector intrinsics
	Inline assembly
	RVV vs. Arm SVE

	Compiling vector code with CHERI-Clang
	Adapting vector assembly instructions to CHERI
	Adapting vector intrinsics to CHERI
	Storing scalable vectors on the stack

	Testing and evaluation
	Hypothesis H-3 - Compiling/running legacy code in integer mode
	Hypothesis H-4 - Converting legacy code to pure-capability code
	Hypothesis H-5 - Saving vectors on the stack
	Hypothesis H-6 - Running CHERI-RVV code in a multiprocessing system

	Recommended changes for CHERI-Clang

	Capabilities-in-vectors
	Extending the emulator
	Testing and evaluation
	Hypothesis H-7 - Holding capabilities in vectors
	Hypothesis H-8 - Sending capabilities between vectors and memory
	Hypothesis H-9 - Manipulating capabilities in vectors

	Conclusion
	Evaluating hypotheses
	Future work

	References
	rust_cheri_compressed_cap documentation
	Code Snippets
	C example — Basic RVV program
	C example — Saving/restoring vector registers
	C example — Arm SVE
	riscv-v-lite — Vector memory accesses

	Fast path vector checks
	Masked accesses
	Unit accesses
	Strided accesses
	Indexed accesses

	Compiler information
	Vanilla RVV command-line options
	CHERI-RVV command-line options
	Compiler support for RVV
	Ensuring compatibility between different compilers
	Building riscv-gnu-toolchain with vector support

	CHERI-RVV changes from CHERI and RVV
	Loading/storing with capabilities
	Capabilities-in-vectors changes
	Relevant properties

	Full test results
	Initial Smoke Tests
	vector_memcpy
	vector_memcpy_pointers

	Artifacts

