
Capability-Based Memory Protection for Scalable Vector
Processing

Samuel Stark (sws35@cam.ac.uk)
June 16th 2022

mailto:sws35@cam.ac.uk

Impenetrable Title

Capability-Based Memory Protection for
Scalable Vector Processing

1

Impenetrable Title

Capability-Based Memory Protection for
Scalable Vector Processing

1

Impenetrable Title

Capability-Based Memory Protection for
Scalable Vector Processing

1

Background - What is CHERI?

Capability-Based Memory Protection == CHERI1

• Memory is normally addressed with integers
• Integer addresses can be forged
• Code can be tricked into accessing memory it shouldn’t

• CHERI architectures use capability addressing
• Capability = Bounds + current address

• Capabilities cannot be forged, only derived from other capabilities

Code can only access memory when it has been given access to that memory
1Capability Hardware Enhanced RISC Instructions[1]

2

Background - What are vectors?

(Scalable) Vector Processing

• Vector architectures allow programmers to use SIMD
• Most vector architectures have fixed-length vectors

• SSE, Arm Neon = 128-bit, AVX-512 = 512
• Vector lengths have hardware tradeoff
• Need to recompile code for different vector lengths

• Scalable vector architectures give designers
flexibility[2]

• Code doesn’t rely on fixed vector length

24 9 9 28

+
13 17 10 24

=
37 26 19 52

Table 1: Vector addition

3

Have we combined them before?

• CHERI affects vector memory accesses
• Loading N vector elements in a single instruction
• Per-element bounds checks could be expensive?

• Arm have manufactured CHERI hardware
• Has fixed-length SIMD
• Doesn’t support complex access patterns

• No other general-purpose CHERI processors with vector support

Where does this matter?

4

Background - Where does it matter most?

memcpy!

• Take data and copy it somewhere else

• Extremely widespread operation

• Vectors can copy more data per instruction

• Vectorized memcpy should work and go fast
on CHERI

5

Background - Where does it matter most?

Vectorized memcpy!

• Take data and copy it somewhere else

• Extremely widespread operation

• Vectors can copy more data per instruction

• Vectorized memcpy should work and go fast
on CHERI

5

Project goal

Make vectorized memcpy functional and fast on CHERI

Combine the RISC-V Vector extension (RVV) with CHERI-RISC-V

1. Write a RISC-V CHERI-RVV emulator in Rust
• Demonstrates hardware feasibility

2. Write test programs in C
• Demonstrates software feasibility

3. Run the test programs on the emulator!

6

Project goal

Make vectorized memcpy functional and fast on CHERI

Combine the RISC-V Vector extension (RVV) with CHERI-RISC-V

RVV (original)

• Uses integer addressing

• Loads/stores integer data

CHERI-RVV (ours)

• Uses capability addressing
• Performance concerns?

• Loads/stores integers and capabilities
• Doesn’t break CHERI security

6

Step 1: Making vector accesses use
capabilities

Vector memory access patterns

1. Unit-stride
• base, base+1,
base+2...

2. Strided
• base, base+n,
base+2n...

3. Indexed
• base + index[0],
base + index[1],
base + index[2]...

memory

v-registers

base

Figure 1: Unit access

7

Vector memory access patterns

1. Unit-stride
• base, base+1,
base+2...

2. Strided
• base, base+n,
base+2n...

3. Indexed
• base + index[0],
base + index[1],
base + index[2]...

4 = stride

4 4 4

memory

v-registers

base

Figure 2: Strided

7

Vector memory access patterns

1. Unit-stride
• base, base+1,
base+2...

2. Strided
• base, base+n,
base+2n...

3. Indexed
• base + index[0],
base + index[1],
base + index[2]...

indices17 53 8 44

v-registers

base

memory

Figure 3: Indexed
7

Vector memory access patterns

Unit-stride

Base address 0x37f0

Strided

Base address 0x37f0
Stride 2

Indexed

Base address 0x37f0
Index vector 8 2 13 4

Property Example value Memory pattern

8

Vector memory access patterns

Unit-stride

Base capability 0x3700.. 0x37f0 ..0x3800

Strided

Base capability 0x3700.. 0x37f0 ..0x3800

Stride 2

Indexed

Base capability 0x3700.. 0x37f0 ..0x3800

Index vector 8 2 13 4

Property Example value Memory pattern

8

Step 2: Making vector accesses copy
capabilities

Storing capabilities in memory

• Memory can hold both capabilities
and integers

• Separate tag memory denotes
which regions are capabilities

• Access to tag memory is controlled
by hardware

• Without the tag, you get the integer
encoding of the capability

4436c97773d3504fint
cap

int
...

data[128:0]tag

0x3700..0x37f0..0x3800

9

Storing capabilities in memory

• Memory can hold both capabilities
and integers

• Separate tag memory denotes
which regions are capabilities

• Access to tag memory is controlled
by hardware

• Without the tag, you get the integer
encoding of the capability

cap 0x3700..0x37f0..0x3800

328e7b9f0d9be18e

integer

encoding

9

Integer-only memcpy

• The original RVV specification doesn’t
consider capabilities

• Assumes vectors only hold integer data

• ⇒ memcpy converts capabilities to integers
:(

4436c97773d3504f
src

int
cap 0x3700..0x37f0..0x3800

v-registers
4436c97773d3504f
328e7b9f0d9be18e

4436c97773d3504fint
328e7b9f0d9be18eint

dest

10

Integer-only memcpy

• The original RVV specification doesn’t
consider capabilities

• Assumes vectors only hold integer data

• ⇒ memcpy converts capabilities to integers
:(

4436c97773d3504f
src

int
cap 0x3700..0x37f0..0x3800

v-registers
4436c97773d3504f
328e7b9f0d9be18e

4436c97773d3504fint
328e7b9f0d9be18eint

dest

int
int

10

Copying capabilities in vectors

• If we add tag bits to vector registers, we can
load/store them correctly

• But does that make anything else more
complicated?

• Yes

4436c97773d3504f
src

int
cap 0x3700..0x37f0..0x3800

v-registers
4436c97773d3504f

4436c97773d3504fint
dest

cap 0x3700..0x37f0..0x3800

cap 0x3700..0x37f0..0x3800

int

11

Storing capabilities in vectors???

• Now all vector instructions can
interact with capabilities!

• If we aren’t careful, attackers could
forge capabilities

• We introduce two contexts of
accessing vector registers

• Integer context
• Capability context

??????

cap

int 0 0 0 0
+

=

0x3700..0x37f0..0x3800

12

Storing capabilities in vectors???

• Now all vector instructions can
interact with capabilities!

• If we aren’t careful, attackers could
forge capabilities

• We introduce two contexts of
accessing vector registers

• Integer context
• Capability context

cap

int 0012 0 07ff 0
+

=
cap <secret data>???

0x3700..0x37f0..0x3800

12

Storing capabilities in vectors???

• Now all vector instructions can
interact with capabilities!

• If we aren’t careful, attackers could
forge capabilities

• We introduce two contexts of
accessing vector registers

• Integer context
• Capability context

cap 0x3700..0x37f0..0x3780

int 0 0 0 0
+

=

int 328e 7b9f 0d9b e18e

int 328e 7b9f 0d9b e18e

12

Integer/Capability context

4436c97773d3504f
src

int
cap 0x3700..0x37f0..0x3800

v-registers
4436c97773d3504f

4436c97773d3504fint
dest

cap 0x3700..0x37f0..0x3800

cap 0x3700..0x37f0..0x3800

int

Capability context
(128-bit vector loads/stores)

cap 0x3700..0x37f0..0x3780

int 0 0 0 0
+

=

int 328e 7b9f 0d9b e18e

int 328e 7b9f 0d9b e18e

Integer context
(Everything else)

13

memcpy works!

RV32 RV-64

llvm-13 llvm-13 llvm-15 gcc CHERI CHERI (Int)

Copy Y Y Y Y Y Y
Copy + Invalidate - - - - Y Y

14

Conclusion

CHERI-RVV Summary

Uses capability addressing
Loads/stores integers and capabilities
Doesn’t break CHERI security

Supports all vanilla RVV instructions
Is binary-compatible with vanilla RVV
Can be* source-compatible with vanilla RVV

Has a reference implementation:
Emulator, compiler*, test programs
9,500 LoC

*compiler requires engineering work

Future work

Do more with vectors than just

1. Vectorized memcpy
2. Vectorized tag clearing

Add new instructions for e.g.
temporal revocation[3]?

Samuel Stark
sws35@cam.ac.uk

15

mailto:sws35@cam.ac.uk

Conclusion

CHERI-RVV Summary

Uses capability addressing
Loads/stores integers and capabilities
Doesn’t break CHERI security

Supports all vanilla RVV instructions
Is binary-compatible with vanilla RVV
Can be* source-compatible with vanilla RVV

Has a reference implementation:
Emulator, compiler*, test programs
9,500 LoC

*compiler requires engineering work

Future work

Do more with vectors than just

1. Vectorized memcpy
2. Vectorized tag clearing

Add new instructions for e.g.
temporal revocation[3]?

Samuel Stark
sws35@cam.ac.uk

15

mailto:sws35@cam.ac.uk

Per-element checks

• Vector hardware can coalesce element accesses
• e.g. 4x 32-bit elements in the same cache line can be transferred over a 128-bit
bus at once

• Want to coalesce the per-element capability checks as well
• Otherwise they could bottleneck
• Or use too much logic

• We found we can coalesce capability checks if they succeed
• i.e. ”is the cache line inside the capability bounds”
• But if that check fails, we have to check each element individually
• RVV requires that any synchronous exception (i.e. capability check) reports the
element that triggered it

References i

References

[1] Robert N M Watson et al. An Introduction to CHERI. UCAM-CL-TR-941.
September 2019, p. 43.

[2] Nigel Stephens et al. “The ARM Scalable Vector Extension”. In: IEEE Micro 37.2
(March 2017), pp. 26–39. issn: 0272-1732. doi: 10.1109/MM.2017.35.

[3] Hongyan Xia et al. “CHERIvoke: Characterising Pointer Revocation Using CHERI
Capabilities for Temporal Memory Safety”. In: (2019), p. 14. doi: 10/gm9ngg.

https://doi.org/10.1109/MM.2017.35
https://doi.org/10/gm9ngg

	Intro
	Step 1: Making vector accesses use capabilities
	Step 2: Making vector accesses copy capabilities
	Conclusion
	Appendix
	References

