
Performance Optimization and Visualization
for a Fluid Dynamics Simulation

CS351 CSE Project

Final Report

Samuel Stark

Supervisor: Dr. Matt Leeke

Department of Computer Science

University of Warwick

May 2021

Abstract

Using CFD programs to simulate fluids has become an incredibly important element

of many research areas and industrial applications such as weather forecasting,

animation, and vehicle design. Complex simulations may require large & expensive

systems to complete, and even then may take multiple hours to finish. Making

simulations run faster on relatively cheap GPU hardware would lower the barrier

to entry, and help users work effectively by reducing their iteration times.

User efficiency may also be improved with real-time in-situ visualization, where

data is visualized and displayed in parallel with the simulation. For advanced visual-

ization features to be included, or to combine many different visualization features,

an implementation must be efficient enough to not delay the simulation work.

The goal of this project is to implement a real-time tightly-coupled in-situ visu-

alized fluid simulation. While real-time in-situ visualizations exist in games, this

implementation provides novelty by focusing on accuracy over graphical fidelity.

A simulation is ported to the GPU to improve performance, and optimized for the

CUDA platform. The visualization is implemented from scratch with Vulkan, us-

ing techniques from the games industry for efficient rendering. This implementa-

tion is evaluated against the original simulation and other simulation/visualization

programs, and the impact of an advanced visualization is shown to be negligible

compared to the simulation.

Keywords: Fluid Simulation, CUDA, Vulkan, GPU, In-Situ, Visualization

Acknowledgements

Many people contributed to this project’s success, and there are a few in particu-

lar I’d like to thank. Firstly my project supervisor, Dr Matthew Leeke, has been a

fantastic help throughout the project’s development. He initially helped steer the

project in the right direction, decided the title, and gave me pointers on how to re-

search. He’s always been quick to give insightful feedback, even when responding

to late-night emails, and sets a high academic standard that I will strive to reach

throughout the rest of my career.

Next, I’d like to thank the Second Assessor, Dr Sam Agbroko, for attending my

presentation and marking this report. His questions and feedback for the present-

ation informed the direction of this report, especially the emphasis on novelty.

Thirdly, Dr Gavin Stark has always been willing to lend me an ear and bounce

my ideas around. Finally, the rest of my friends and family have all been a great

support throughout the project, for which I am very grateful.

Contents

Abstract . i

Acknowledgements . ii

List of Figures . x

List of Tables . xi

1 Introduction 1

1.1 Motivation . 2

1.2 Project Aims . 3

1.3 Stakeholders . 3

2 Research 4

2.1 An Example Simulation Tick . 5

2.1.1 The Simulation Variables . 6

2.1.2 Overall Simulation Structure 7

2.1.3 Timestep Calculation . 8

2.1.4 Tentative Velocity . 9

2.1.5 Solving the Poisson Equation with SOR 9

2.1.6 Final Velocity Calculations . 12

2.2 Optimization . 13

2.2.1 Background . 13

iii

2.2.2 Previous Work . 13

2.2.3 New Optimizations . 15

2.2.4 Conclusion . 16

2.3 Visualization . 17

2.3.1 Background . 17

2.3.2 Previous Work . 18

2.3.3 Current State-of-the-Art . 20

2.3.4 Stagnation & Composition . 25

2.3.5 Realtime Particle Simulation Techniques 26

2.3.6 Conclusions . 28

3 Ethical, Social, and Legal Issues 29

4 Project Requirements 30

4.1 Functional Requirements . 31

4.2 Non-Functional Requirements . 33

4.3 Hardware and Software Constraints 34

5 Design 35

5.1 Code Structure . 35

5.2 Simulation & Memory Layer . 38

5.2.1 CUDA Design . 38

5.2.2 N-Buffering . 39

5.3 Visualization Layer . 40

5.3.1 Components . 40

5.3.2 Timing Breakdown . 42

5.3.3 Visualization Work Breakdown 44

5.4 Command-Line Layer & Program Usage 48

5.4.1 Generating Inputs . 49

5.4.2 File Formats . 50

5.4.3 Comparison Heuristics . 51

6 Implementation 53

6.1 Preliminary Work & Background . 54

6.1.1 C++ Primer . 54

6.1.2 Build System . 57

6.1.3 Library Selection . 58

6.2 Code Safety . 60

6.2.1 Smart Resource Classes . 61

6.3 Memory Layer . 64

6.3.1 Array Handles . 65

6.3.2 FrameAllocator . 65

6.3.3 FrameSetAllocator . 66

6.3.4 Usage in Other Layers . 66

6.4 Simulation Layer . 67

6.4.1 Runners . 67

6.4.2 Backends . 68

6.4.3 Usage in Other Layers . 71

6.5 Visualization Layer . 72

6.5.1 Multithreading . 72

6.5.2 GPU Work Breakdown . 72

6.5.3 Safe CPU/GPU Communication 75

6.5.4 Usage in Other Layers . 76

6.6 Command-Line Layer . 77

7 Project Management 78

7.1 Software Development Methodology 78

7.2 Project Timeline . 79

7.3 Tools . 79

7.4 Risk Management . 80

7.4.1 Misscheduling . 80

7.4.2 Other Pressures . 81

7.4.3 Loss of Hardware Access . 81

7.4.4 Illness . 82

8 Testing & Success Measurement 83

8.1 Unit Tests . 83

8.2 Integration Testing . 84

8.3 System Testing . 85

8.3.1 Success Measurement . 85

9 Results 91

9.1 Simulation . 92

9.1.1 Speed . 92

9.1.2 Accuracy . 96

9.1.3 GPU Utilization . 99

9.1.4 Memory Leaks . 99

9.2 Visualization . 100

9.2.1 Speed . 100

9.2.2 GPU Utilization . 100

9.2.3 Memory Leaks . 101

10 Evaluation 102

10.1 Requirements Evaluation . 102

10.2 Project Management . 104

11 Conclusion 105

11.1 Summary . 105

11.2 Reflection . 106

11.3 Future Work . 107

12 Bibliography 108

A Smart Resource Classes 115

B Previous Project Reports 117

B.1 Presentation . 118

B.2 Progress Report . 140

List of Figures

2.1.1 Discretization points for each variable on the staggered grid[8] 6

2.1.2 Stages of a Simulation Tick . 8

2.1.3 Example checkerboard pattern used for red/black splitting 11

2.3.1 Examples of the three outputs available from the original visualization 18

2.3.2 Results Ribbon for Autodesk CFD 2019[65, Results Visualization] . . . 20

2.3.3 Using the Global Controls to visualize a scalar result[66] 21

2.3.4 Result Planes displaying different types of Quantity 22

2.3.5 Example of an Isosurface, defined by a velocity magnitude and dis-

playing static pressure. 23

2.3.6 Examples of Autodesk particle trails. 24

2.3.7 MET Office weather report[67] . 25

2.3.8 Equation for particle movement in unsteady flow 26

5.1.1 Overall Code Structure . 36

5.3.1 Timing Breakdown of four visualization frames, assuming two sets of

per-frame data . 41

5.3.2 Visualization Work Breakdown . 44

5.3.3 Instanced Rendering Demonstration 46

5.3.4 Example of the Visualization GUI . 47

viii

5.4.1 Example usage of the simulation program 48

5.4.2 Example conversion of an image to a simulation state 49

5.4.3 Example Fluid Parameters file . 50

5.4.4 Examples of outputs from the comparison tool 52

6.1.1 Inefficiencies of virtual inheritance (x86 assembly code generated from

https://godbolt.org/z/PfEq3TPdn) 55

6.1.2 Using templates for polymorphism (x86 assembly code generated from

https://godbolt.org/z/hfM465EYa) 56

6.1.3 Conditionally supporting CUDA based on a preprocessor directive . . 57

6.1.4 Graphics and Compute Backend Interoperability Matrix 58

6.2.1 Examples of error safety via macros 61

6.2.2 Example of memory management with C++ standard classes 62

6.2.3 Automatic forgetting with ForgetOnMove<T> vs. manual handling . . 63

6.3.1 Memory Layer Typeclasses . 64

6.4.1 Backend typeclass . 68

6.4.2 Example of CUDA matrix templates 69

6.4.3 Profiler traces of the Poisson kernels before and after CUDA graphs . 70

6.4.4 Using asynchronous copies for greater efficiency 71

6.5.1 Data Transformation Diagram showing the data flow for the Visual-

ization . 73

6.5.2 Reading from an image directly vs. using a sampler 74

6.5.3 Example showing the granularity of Memory Barriers 74

6.5.4 Breakdown of particle-related GPU work 75

7.2.1 Project Schedule as a Gantt Chart . 79

9.1.1 Ticks executed over time . 92

9.1.2 Simulation Tick Speed vs. Poisson Iterations 93

9.1.3 Simulation Tick Speed relative to CPU 93

9.1.4 Simulation Throughput for CPU and CUDA vs Poisson cache size . . 94

9.1.5 Simulation Throughput for CUDA, split into stages 94

9.1.6 Initial MSE Results . 97

9.1.7 Inflation of pressure values with Poisson iterations 97

9.1.8 MSE for Pressure when adjusted to use relative values 98

9.1.9 Simulation Profile, highlighting the GPU bubbles 99

9.2.1 Visualization Profile, highlighting the GPU bubbles 101

List of Tables

2.3.1 Summary of results tools from Autodesk CFD 20

5.3.1 GPU Execution Phases, with abbreviations 40

7.2.1 Project Schedule Tasks . 80

8.3.1 Unit Tests . 87

8.3.2 Integration Tests . 88

8.3.3 System Tests (Functional) . 89

8.3.4 System Tests (Non-Functional) . 90

9.1.1 Throughput Measurement Points . 95

9.1.2 Log of Mean Square Error between CPU and CUDA results (Numbers

closer to 0 are worse) . 96

9.1.3 Residual values after 50 s of simulation on original simulation input . 96

9.2.1 Testing Scenarios for Visualization Feature Speed. 100

9.2.2 Visualization feature execution times 100

10.1.1 Evaluation of Functional Requirements 103

10.1.2 Evaluation of Non-Functional Requirements 103

10.1.3 Failed Requirements . 104

xi

CHAPTER 1

Introduction

Developing equations and mathematical constructs that model natural phenomena

has been a large research space for centuries. As digital computers have developed,

programs have been built to use these equations and find the results much faster

than previously possible[58]. Computational Fluid Dynamics (CFD) programs are

programs that simulate fluid flow in some form, usually using the Navier-Stokes

equations (reproduced in Eqs. (2.1.1) and (2.1.2)). These fluid simulations have a

variety of uses, including in aerodynamics[1], fire spread modelling[2], and in the

entertainment industry (albeit with a focus on artistic input rather than physical

accuracy[3]).

If the required fluid simulations are large, in-situ visualization is an effective

method. Rather than storing simulation output to huge datafiles before visualiz-

ing them, visualization is done in parallel with the simulation[4]. The rest of the

simulation output does not need to be stored, reducing storage requirements sig-

nificantly. In-situ methods can be described as tightly-coupled, loosely-coupled, or

as a hybrid between the two. Tightly coupled visualizations share memory directly

with the simulation on the same machine, and loosely coupled visualizations have

independent visualization machines that receive simulation data over a network.

1

Both configurations reduce the required storage space, but they have separate ad-

vantages and disadvantages.

Most cases generally do not require simulations at interactive speeds, except

for those found in the games industry. While the games industry does use fluid

simulation[5]1, many uses do not precisely integrate the Navier-Stokes equations

but approximate them using a Lagrangian method[6]. An exception to this is [7],

which uses a Jacobi solver for the Navier-Stokes equations. This is used to simu-

late character interaction with different substances floating on the water surface[7],

not to simulate large blocks of water. By and large, interactive speeds and precise

simulation for large fields are not pursued together.

1.1 Motivation

The 2020 Advanced Computer Architecture coursework presented a fluid simula-

tion and tasked the students with optimizing it for a 6-core Intel i5-8500 CPU[59].

The original code ran very slowly, taking 80 seconds to simulate 10 simulation-

seconds. After optimizations, the code performed the same simulation in just 1.26

seconds, 64x faster than the original and 7.9x faster than real-time[60].

This original simulation purposefully limited itself in some aspects, such as it-

eration count for an equation solver, which prevented it from converging to an

accurate solution for the test data. Students were also explicitly prevented from

accelerating the simulation using a GPU, which could have made it much faster as

each simulation phase is embarrassingly parallel.

Another limitation was that the simulation state could only be visualized once

the full simulation had completed, instead of in real-time, even though the final sim-

ulation was fast enough. This made the results much more difficult to understand,

especially for people who don’t understand the underlying code or mathematics.
1As these methods all share the simulation and visualization memory, they are tightly-coupled in-situ visualizations.

2

1.2 Project Aims

This project has three overarching goals: to port the original simulation to the GPU,

use the speedup to increase the simulation accuracy, and implement a real-time

tightly-coupled in-situ visualization. The combined simulation-visualization is the

core contribution of this project, referred to as “the program” throughout the rest

of this report.

While real-time in-situ visualizations exist in games, where graphical fidelity is

the priority, there has not been an attempt to implement one in an industrial or

academic context to the researcher’s knowledge. The main novelty of this project

is the combination of an accurate simulation with real-time visualization methods

that aim to communicate important data instead of just looking pretty.

1.3 Stakeholders

The main stakeholders are the researcher and the project supervisor. Both stake-

holders are invested in the project due to personal interest, and in the case of the

researcher the effect this project has on final year grades.

3

CHAPTER 2

Research

Research was a key element of this project. Implementing and optimizing a fluid

simulation without losing correctness required a complete understanding of the

mathematics the sim evaluates. From this base, optimizations were applied to speed

up the program without accidentally changing the result. As GPU-based optimiza-

tion is a wide-reaching problem that has been investigated before, researching op-

timizations that others have found effective was the first step taken before design-

ing the program. Implementing the visualization required investigation of the cur-

rent state-of-the-art visualizationmethods, alongwith specificmethods for building

GPU-based visualizations.

This chapter details all research that was performed while building the program.

All the equations related to a simulation ‘tick’ are stepped through in the first sec-

tion. The next section collates research into the possible optimizations for the GPU

implementation, and the final section details the current status of visualizations and

some techniques used in the final program.

4

2.1 An Example Simulation Tick

The1998 book “Numerical simulation in fluid dynamics: a practical introduction”[8]

defines a basic structure for a discrete simulated timestep (a.k.a. a “tick”) and provides

a sample guide to implementing it in Fortran or C. This was used as the base of the

original simulation and continues to be the base of this project. This section will

explain the general structure of the simulation as defined in [8].

The simulation described specifically simulates “laminar flows of viscous, incom-

pressible fluids”[8] in 2D. Laminar flows can be treated as separate layers of particles

that can slide past each other, which interact solely through friction forces. The op-

posite of this is Turbulent flow, where particles may move between layers due to

small friction forces[8]. This adds extra viscosity (the turbulent eddy viscosity, as

covered in more detail in [9]) which is much more difficult to accurately model.

Incompressible fluids have a uniform density across the entire flow, which greatly

simplifies the calculations. This property can be assumed for low-velocity gases and

most liquids[8].

Viscous fluids have high internal friction forces that will eventually bring a mov-

ing fluid to rest. The viscosity is controlled by a parameter known as the Reynolds

number 𝑅𝑒[10], which is constant over the fluid. As 𝑅𝑒 → 0 the viscosity of the

fluid approaches infinity, and as 𝑅𝑒 → ∞ the fluid becomes inviscid, i.e. not vis-

cous. Using high 𝑅𝑒 this sim could be used to simulate inviscid fluids, although it

is important for the fluid to still be laminar and incompressible.

Any forces acting throughout the bulk of the fluid i.e. gravity can be simulated

using the 𝑔 = (𝑔𝑥 , 𝑔𝑦) vector. However, the 2D variant of the simulation has been

used in this project for top-down simulations with a level plane, so this is left un-

used.

5

2.1.1 The Simulation Variables

The simulation solves for three variables: horizontal velocity 𝑢, vertical velocity 𝑣 ,

and pressure 𝑝 . These variables are related by the Navier-Stokes momentum and

continuity equations, which can be written as follows:

𝜕𝑢

𝜕𝑡
+

𝜕𝑝

𝜕𝑥
=

1

𝑅𝑒

(
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

)
− 𝜕(𝑢2)

𝜕𝑥
− 𝜕(𝑢𝑣)

𝜕𝑦
+ 𝑔𝑥 ,

𝜕𝑣

𝜕𝑡
+

𝜕𝑝

𝜕𝑦
=

1

𝑅𝑒

(
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2

)
− 𝜕(𝑢𝑣)

𝜕𝑥
− 𝜕(𝑣2)

𝜕𝑦
+ 𝑔𝑦

(2.1.1)

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (2.1.2)

The values of the simulated quantities at tick #𝑛 are represented by 𝑢(𝑛), 𝑣(𝑛), 𝑝(𝑛).

These values are discretized by evaluating them at points on a staggered grid (see

Fig. 2.1.1). This grid is indexed by 𝑖 in the x-direction and 𝑗 in the y-direction. It

is important to note the variables 𝑢, 𝑣 represent the current velocity of the fluid

within each grid space, not the velocity of the grid cells themselves. The grid does

not move at any point during the simulation.

j-1

j

j+1

i-1 i i+1 i+2

𝑝𝑖, 𝑗 𝑝𝑖+1, 𝑗

𝑢𝑖−1, 𝑗 𝑢𝑖, 𝑗 𝑢𝑖+1, 𝑗

𝑣𝑖, 𝑗 𝑣𝑖+1, 𝑗

𝑣𝑖, 𝑗−1 𝑣𝑖+1, 𝑗−1

Figure 2.1.1: Discretization points for each variable on the staggered grid[8]

Each of the variables is located at a different position on the grid cell. Horizontal

velocity 𝑢𝑖, 𝑗 is at the midpoint of the right cell edge, vertical velocity 𝑣𝑖, 𝑗 is at the

midpoint of the top cell edge, and pressure 𝑝𝑖, 𝑗 is at the midpoint of the cell. This is

used to solve odd-even decoupling[11]: for a fluid at rest (i.e. 𝑢 = 𝑣 = 0) the con-

6

tinuous solution is that the pressure 𝑝 is a constant across the grid. However, were

this to be discretized using central differences with all variables in the same loca-

tions, it would also be possible for a checkerboard of pressure values to form, and

for oscillation to take place[8]. Staggering the variables prevents this. Perić, Kessler

and Scheuerer[12] show that this is also preventable through colocated grids, where

a single grid is used for all variables and the velocities of each side of the cell are

found using interpolation. These cell sides are implicitly staggered relative to the

pressure and so avoid this problem.

To allow for derivatives to be accurately calculated for cells on the edges of the

grid, boundary cells are added around each grid. The cells on the edges of any

obstacles in the simulation are alsomarked as boundary squares. For a finite domain

of size (𝑖𝑚𝑎𝑥, 𝑗𝑚𝑎𝑥) this leads to a final grid size of (𝑖𝑚𝑎𝑥+2) by (𝑗𝑚𝑎𝑥+2), where

valid fluid values fall in the ranges 𝑖 ∈ {1..𝑖𝑚𝑎𝑥}, 𝑗 ∈ {1.. 𝑗𝑚𝑎𝑥}.
The physical dimensions of each grid space are represented by 𝛿𝑥 , 𝛿𝑦. This allows

the derivatives of 𝑢 and 𝑣 to be calculated by finding the centred differences.[
𝜕𝑢

𝜕𝑥

]
𝑖, 𝑗

:=
𝑢𝑖, 𝑗 − 𝑢𝑖−1, 𝑗

𝛿𝑥
,

[
𝜕𝑣

𝜕𝑦

]
𝑖, 𝑗

:=
𝑣𝑖, 𝑗 − 𝑣𝑖, 𝑗−1

𝛿𝑦
(2.1.3)

The partial derivatives for pressure 𝜕𝑝/𝜕𝑥, 𝜕𝑝/𝜕𝑦 are found in the same way. The

remaining derivatives, including second derivatives and 𝜕𝑢𝑣/𝜕𝑥, 𝜕𝑢𝑣/𝜕𝑦, can also

be discretized by taking the difference across midpoints of their respective dimen-

sions[13].

2.1.2 Overall Simulation Structure

Each simulation tick can be split into multiple stages, shown in Fig. 2.1.2. These

stages are described in detail in the following sections.

7

Compute 𝛿𝑡

Compute Tentative Velocity

Compute Poisson RHS

Poisson Solver

Update Velocity

Boundary Conditions

𝑁 iterations

Figure 2.1.2: Stages of a Simulation Tick

2.1.3 Timestep Calculation

Each simulation tick simulates a discrete amount of time known as a timestep 𝛿𝑡 .

This timestep is not a fixed value, and typically one would want to select as large a

timestep as possible, but there are constraints on its maximum value which depend

on the simulation state.

As the derivatives are calculated between adjacent grid points, it is impossible to

accurately simulate a timestep where fluid moves between non-adjacent grid cells.

To prevent this, the timestep 𝛿𝑡 is calculated from the fluid velocities to make it

unlikely.

𝛿𝑡 = 𝜏 ∗min
(
𝑅𝑒

2

(
1

𝛿𝑥2
+

1

𝛿𝑦2

)−1
,

𝛿𝑥

|𝑢𝑚𝑎𝑥 |
,

𝛿𝑦

|𝑣𝑚𝑎𝑥 |

)
(2.1.4)

Because the new velocities calculated in this tick may be larger than 𝑢𝑚𝑎𝑥 and

𝑣𝑚𝑎𝑥 , the safety factor 𝜏 ∈ [0, 1] is used to ensure the timestep is large enough to

account for it[14].

8

2.1.4 Tentative Velocity

The final values of 𝑢 and 𝑣 are defined as

𝑢(𝑛+1) = 𝑢(𝑛) + 𝛿𝑡

[
1

𝑅𝑒

(
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

)
− 𝜕(𝑢2)

𝜕𝑥
− 𝜕(𝑢𝑣)

𝜕𝑦
+ 𝑔𝑥 −

𝜕𝑝

𝜕𝑥

]
𝑣(𝑛+1) = 𝑣(𝑛) + 𝛿𝑡

[
1

𝑅𝑒

(
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2

)
− 𝜕(𝑢𝑣)

𝜕𝑥
− 𝜕(𝑣2)

𝜕𝑦
+ 𝑔𝑦 −

𝜕𝑝

𝜕𝑦

] (2.1.5)

However, as these depend on the partial derivatives of 𝑝 , which itself depends on

velocity, they cannot be solved analytically. Variables 𝑓 and 𝑔, for horizontal and

vertical “tentative velocity”, are introduced to remove the dependency on 𝑝 .

𝑓 (𝑛) := 𝑢(𝑛) + 𝛿𝑡

[
1

𝑅𝑒

(
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

)
− 𝜕(𝑢2)

𝜕𝑥
− 𝜕(𝑢𝑣)

𝜕𝑦
+ 𝑔𝑥

]
𝑔(𝑛) := 𝑣(𝑛) + 𝛿𝑡

[
1

𝑅𝑒

(
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2

)
− 𝜕(𝑢𝑣)

𝜕𝑥
− 𝜕(𝑣2)

𝜕𝑦
+ 𝑔𝑦

] (2.1.6)

𝑢(𝑛+1) = 𝑓 (𝑛) − 𝛿𝑡
𝜕𝑝(𝑛+1)

𝜕𝑥

𝑣(𝑛+1) = 𝑔(𝑛) − 𝛿𝑡
𝜕𝑝(𝑛+1)

𝜕𝑦

(2.1.7)

2.1.5 Solving the Poisson Equation with SOR

For continuity to be achieved, the final velocity values must fulfil the continuity

equation (Eq. (2.1.2)), the time discretization of which is shown below:

𝜕𝑢(𝑛+1)

𝜕𝑥
+

𝜕𝑣(𝑛+1)

𝜕𝑦
= 0 (2.1.8)

This means that the total amount of fluid entering a cell in tick 𝑛+1 is equal to the

amount of fluid leaving, which must be the case otherwise the amount of fluid per

cell wouldn’t be constant and the fluid would become compressed.

Substituting the formulae in Eq. (2.1.7) into this relation and rearranging gives

𝜕2𝑝(𝑛+1)

𝜕𝑥2
+

𝜕2𝑝(𝑛+1)

𝜕𝑦2
=

1

𝛿𝑡
©«
𝜕𝑓

(𝑛)
𝑖, 𝑗

𝜕𝑥
+

𝜕𝑔
(𝑛)
𝑖, 𝑗

𝜕𝑦
ª®¬ (2.1.9)

9

The right-hand side of this equation is constant for timestep 𝑛, so can be precalcu-

lated and assigned to the variable 𝑟ℎ𝑠 .

𝑟ℎ𝑠𝑖, 𝑗 :=
1

𝛿𝑡
©«
𝜕𝑓

(𝑛)
𝑖, 𝑗

𝜕𝑥
+

𝜕𝑔
(𝑛)
𝑖, 𝑗

𝜕𝑦
ª®¬ (2.1.10)

𝜕2𝑝(𝑛+1)

𝜕𝑥2
+

𝜕2𝑝(𝑛+1)

𝜕𝑦2
= 𝑟ℎ𝑠𝑖, 𝑗 (2.1.11)

Discretizing this gives

𝑝
(𝑛+1)
𝑖+1, 𝑗 − 2𝑝

(𝑛+1)
𝑖, 𝑗 + 𝑝

(𝑛+1)
𝑖−1, 𝑗

(𝛿𝑥)2
+

𝑝
(𝑛+1)
𝑖, 𝑗+1 − 2𝑝

(𝑛+1)
𝑖, 𝑗 + 𝑝

(𝑛+1)
𝑖, 𝑗−1

(𝛿𝑦)2
= 𝑟ℎ𝑠𝑖, 𝑗 (2.1.12)

and taking the simplest boundary conditions[8]

𝑝0, 𝑗 = 𝑝1, 𝑗 , 𝑝𝑖𝑚𝑎𝑥+1, 𝑗 = 𝑝𝑖𝑚𝑎𝑥 , 𝑗 𝑗 ∈ {1.. 𝑗𝑚𝑎𝑥 } (2.1.13)

𝑝𝑖,0 = 𝑝𝑖,1, 𝑝𝑖, 𝑗𝑚𝑎𝑥+1 = 𝑝𝑖, 𝑗𝑚𝑎𝑥 𝑖 ∈ {1..𝑖𝑚𝑎𝑥 } (2.1.14)

𝑓0, 𝑗 = 𝑢0, 𝑗 , 𝑓𝑖𝑚𝑎𝑥 , 𝑗 = 𝑢𝑖𝑚𝑎𝑥 , 𝑗 𝑗 ∈ {1.. 𝑗𝑚𝑎𝑥 } (2.1.15)

𝑔𝑖,0 = 𝑣𝑖,0, 𝑔𝑖, 𝑗𝑚𝑎𝑥 = 𝑣𝑖, 𝑗𝑚𝑎𝑥 𝑖 ∈ {1..𝑖𝑚𝑎𝑥 } (2.1.16)

resolves the equation to:

𝜖𝐸𝑖, 𝑗(𝑝
(𝑛+1)
𝑖+1, 𝑗 − 𝑝

(𝑛+1)
𝑖, 𝑗) − 𝜖𝑊𝑖,𝑗 (𝑝

(𝑛+1)
𝑖, 𝑗 − 𝑝

(𝑛+1)
𝑖−1, 𝑗)

(𝛿𝑥)2

+
𝜖𝑁𝑖,𝑗(𝑝

(𝑛+1)
𝑖, 𝑗+1 − 𝑝

(𝑛+1)
𝑖, 𝑗) − 𝜖𝑆𝑖, 𝑗(𝑝

(𝑛+1)
𝑖, 𝑗 − 𝑝

(𝑛+1)
𝑖, 𝑗−1)

(𝛿𝑦)2

= 𝑟ℎ𝑠𝑖, 𝑗 (2.1.17)

where 𝜖{𝑁,𝑆,𝐸,𝑊 }
𝑖, 𝑗 represents the boundary squares. The equation shown on page 11

is for North, but the definition extends to other directions.

10

𝒑 𝒊,𝒋+1

𝒑 𝒊,𝒋

𝒑 𝒊+1,𝒋+1

𝒑 𝒊+1,𝒋

Figure 2.1.3: Example checkerboard pattern used for red/black splitting

𝜖𝑁𝑖,𝑗 =

0 The square directly north of 𝑖, 𝑗 is a boundary

1 The square directly north of 𝑖, 𝑗 is not a boundary
(2.1.18)

Over the whole grid, this results in a linear system of equations over the in-

puts 𝑝𝑖, 𝑗 ∀ 𝑖 ∈ {1..𝑖𝑚𝑎𝑥 }, 𝑗 ∈ {1.. 𝑗𝑚𝑎𝑥 }. These can be decoupled by partition-

ing 𝑝 into red and black squares with a checkerboard pattern (see Fig. 2.1.3). As

each cell’s equation only depends on the adjacent values, iterations of Successive

Over-Relaxation (SOR) can be performed on red and black in turn to reach a final

value1[16]:

𝛽𝑖, 𝑗 :=
𝜔(

𝜖𝐸𝑖,𝑗+𝜖𝑊𝑖,𝑗
(𝛿𝑥)2

+
𝜖𝑁𝑖,𝑗+𝜖𝑆𝑖,𝑗
(𝛿𝑦)2

) (2.1.19)

𝑝𝑖𝑡+1
𝑖, 𝑗 := (1 − 𝜔)𝑝𝑖𝑡𝑖, 𝑗+

𝛽𝑖, 𝑗 ∗
(
𝜖𝐸𝑖, 𝑗𝑝

𝑖𝑡
𝑖+1, 𝑗 + 𝜖𝑊𝑖,𝑗𝑝

𝑖𝑡
𝑖−1, 𝑗

(𝛿𝑥)2
+

𝜖𝑁𝑖,𝑗𝑝
𝑖𝑡
𝑖, 𝑗+1 + 𝜖𝑊𝑖,𝑗𝑝

𝑖𝑡
𝑖, 𝑗−1

(𝛿𝑦)2
− 𝑟ℎ𝑠𝑖, 𝑗

)
(2.1.20)

These iterations are continued until the L2 norm[17] of the residuals (the differ-

ence between the left-hand side as calculated and the expected right-hand side of

Eq. (2.1.20) for each cell) falls below a specific tolerance 2 [8].
1This could equally be done without partitioning 𝑝 , but the partitioning splits the SOR into separate phases which

can then be parallelized. Normal SOR cannot be parallelized[15].
2In the original simulation this tolerance was relative to the L2 norm of 𝑝 , although this was not directly specified

by the book.

11

2.1.6 Final Velocity Calculations

Once the final values of 𝑝 have been calculated the velocity values𝑢, 𝑣 can be found

with Eq. (2.1.7). The boundary conditions for velocity must then be applied. There

are four relevant types of boundary condition3, which are applied depending on the

type of boundary.

1. No-Slip condition - no fluid penetrates the boundary, and fluid does not move

past it i.e. the boundary applies friction.

2. Free-Slip condition - fluid may not penetrate the boundary, but no friction is

applied. Only tangential velocity is preserved for adjacent fluids.

3. Inflow - fluid is flowing in constantly, so the velocity is set to a constant value.

4. Outflow - velocity perpendicular to the surface is preserved and fluids may

flow out.

3The book specifies five, including a Periodic Boundary Condition, which the original simulation did not support.

12

2.2 Optimization

Optimizing simulations is important in all cases, even those that are not real-time,

as it allows the engineers using the software to iterate faster on their designs. When

the extra constraint of real-time speeds is added, it becomes even more important.

This section explores howCFD simulations startedmoving to the GPU, the previous

optimizations applied at the CPU level , and the new optimizations to be applied to

the GPU version.

2.2.1 Background

One of the first papers on optimizing a CFD simulation was released in 1995[18].

This paper considered the effect of automatic compiler parallelization and optim-

ization of a full CFD program, and the steps a programmer must take to guide the

compiler to e.g. avoid false sharing. The program was only executed on the CPU,

as General Purpose GPU computing (GPGPU) had not yet taken hold.

GPGPUwas first used for CFD simulations in 2004 with [19]. This used the “frag-

ment shading” stage of the GPU rendering pipeline to perform the computation, as

standalone “compute” pipelines were only exposed by APIs from 2007 onwards.

Such APIs include CUDA (2007)[41], OpenCL (2008)[54], DirectX’s DirectCompute

(2009)[20], and OpenGL 4’s compute shaders (2012)[55].

Since 2007, using GPGPU for CFD has become a large topic of study, as invest-

igated in detail by [21]. We will take advantage of this to optimize the simulation

speed to the point that a simulation can be both performed and visualized in real-

time, which many other programs do not achieve.

2.2.2 Previous Work

As work on CFD progressed some optimizations were developed that change the

simulation pipeline and provide an overall speedup. Some of these were adapted

into the original CPU simulation[60] and carry over into the CUDA version.

13

Given the definition of 𝛽 in Eq. (2.1.19), the value of 𝛽𝑖, 𝑗 does not change over the

course of the simulation and so can be precalculated before the simulation starts.

Additionally, if it can be guaranteed that for every boundary square 𝑝 = 0, which

can be done either by never updating their pressure values or by updating themwith

𝛽𝑖, 𝑗 = 0, then 𝜖𝑖, 𝑗 doesn’t need to be evaluated during the simulation at all. These

optimizations increased the runtime speed of the Poisson evaluation by 2.24x4, and

they have been kept in the CUDA program.

The book states an alternate solution where 𝜖 is set to 1 at all times and pressure

values on boundaries are copied from adjacent fluid squares[8]. Using this method

may prevent noncontinuous starting velocities from producing nonphysical pres-

sure values. Due to timing constraints this was not implemented for the simulation,

but could be done in the future.

As stated in Section 2.1.5, red/black SOR is used to iteratively solve the Poisson

equation. In the initial CPU simulation the values (𝑓 ,𝑔, 𝑝 , 𝑟ℎ𝑠) for red and black data

were stored in the same arrays. This was problematic as data of the same colour was

never contiguous, and any iteration looking for just red values would get a cache

line with both colours, leading to half of each cache line being wasted. To fix this,

red and black data is split into separate arrays before starting the Poisson solver.

This has been carried over into the CUDA implementation.

The CPU simulation used OpenMP[61] to automatically parallelize the Poisson

solver (and other program elements) by column. That is, each thread was given a

group of columns to process. This was not needed in the CUDA version as each

GPU kernel is implicitly parallelized over many GPU threads.

The CPU simulation included optimizations exploiting properties of the original

code, such as floating-point precision, to speed up calculations while producing

identical results. These optimizations include using fused multiply-add[22] in some

places (but not all), precalculating divisions with double-precision floats, and skip-

ping the residual calculation phase altogether. As this project was focused on im-
4The 𝛽 precalculation increased speed by 1.4x, and the removal of 𝜖 increased speed by 1.6x.[60]

14

proving upon the accuracy and speed of the original simulation, instead of pro-

ducing bit-identical results, some of these optimizations were removed or made

redundant.

2.2.3 New Optimizations

CPUs and GPUs have very distinct designs, so when moving programs between

them it’s important to acknowledge optimization techniques that apply to one and

not the other. This section sums up the research into optimizing CUDA programs,

which were applied when designing/implementing the final program.

CUDA devices combine groups of 32 threads into a ‘warp’ and execute them

concurrently[41]. If the threads in a warp attempt to access multiple words in the

same cache line, the access is coalesced[42] and only one cache line needs to be

fetched for the warp to continue. Otherwise, if the accesses all touch different cache

lines, every cache line needs to be fetched before execution can continue for any of

the threads. This was accounted for when structuring GPU work.

The CUDA C Programming Guide[43] states that read-only memory can be read

into a special data cache using the __ldg() intrinsic. The compiler may insert this

automatically if it detects that data must be read-only, which is preferable to in-

serting it manually. Applying the const and __restrict__ qualifiers on point-

ers to read-only data acts as a strong hint for the compiler to add the intrinsic.

Diarra[23] found that introducing these qualifiers where possible led to large spee-

dups in pointer heavy applications, and while our case may not use many pointers

this should still be implemented wherever possible. This optimization was verified

by checking for the presence of ld.global[44] instructions in the PTX assembly

of compiled GPU kernels.

The CPU simulation used Intel AVX and SSE instructions[62] to calculate four

Poisson values at once5. At the start of the project it was believed that CUDA

cores could use SIMD on four-element floating-point vectors, and that this could
5Vectors of eight were tried but were found to be slower than four.

15

be exploited similarly, but this is not the case. The only SIMD instructions CUDA

allows are for integer vectors of 2x16-bit or 4x8-bit[45]. As the simulation operates

on 32-bit signed floating-point, these instructions are not suitable.

Calculating the simulation timestep and calculating the residual for a Poisson

iteration both require a reduction over large blocks of data. Highly parallel GPU

optimizations have already been studied extensively, so it is trivial to implement

a fast generic reduction kernel. In [24] seven kernels are described, in ascending

order of speed, and the second kernel was used in the CUDA simulation.

CUDA Graphs[46] are a CUDA feature that reduce CPU overhead by invoking

a large amount of GPU work all at once, rather than with individual invocations.

Running a CUDA graph will always use the same arguments as when initially re-

corded, so any work that depends on data that changes quickly (such as a timestep)

might not be suitable. Profiling was used to determine when CUDA graphs are

suitable, then applied only in these cases to avoid overcomplicating the program.

2.2.4 Conclusion

The original CPU simulation used both algorithmic optimizations (such as precom-

puting 𝛽) and CPU architecture-specific optimizations (multithreading, floating-

point tricks, and vectorization). Algorithmic optimizations map well to CUDA un-

like some architecture-specific optimizations, but CUDA makes up for these with

its own suite of optimizations. As with the original CPU simulation, profiling and

inspecting the compiled program was required to check the optimizations provided

the expected benefits.

16

2.3 Visualization

To develop a visualization with similar computational intensity to the current state-

of-the-art, the current state-of-the-art must first be investigated. This section covers

some previous visualizations, including the capabilities built-in to the original pro-

gram, and shows the visual techniques used in Autodesk CFD.The common practice

of combining different techniques is investigated, and an algorithm for massively

parallel particle simulation is shown.

2.3.1 Background

One of the earliest CFD interactive visualizations was in 2002, which had a simula-

tion running slower than real-time on a separate computer to the real-time visual-

ization[25]. Decoupling the simulation speed from the visualization speed allowed

for high framerates to be achieved for the user interface, but any changes made

from the user interface had a delay of 0.5 seconds before being reflected in the sim-

ulation. This qualifies as a loosely-coupled in-situ visualization because simulation

data is streamed to a separate visualization system while the simulation completes.

VTK is a significant open-source toolkit, first introduced in 1993[26], which

powers multiple tools such as ParaView and VisIt. Both of these programs sup-

port tightly-coupled in-situ visualization of an external simulation with plugins,

but the VTK base is not well suited to in-situ integration[4].

Autodesk CFD is a closed-source tool that integrates a simulation with a stand-

ard visualization. It’s based on ALGOR FEA, created by ALGOR Inc which was

acquired by Autodesk in 2008[63]. The latest iteration is targeted at the manufac-

turing industry, unlike VTK, and does not support in-situ visualization.

Both of the above examples are not built for in-situ visualization, but these pro-

grams still represent the industry standard for visualization capabilities. A novel

element of this project is building a program from the ground up for in-situ visual-

ization, and the visualization components will be based on Autodesk.

17

2.3.2 Previous Work

The original simulation[59] included a simple image visualizer for a static state,

which evaluated one of two quantities over the grid and produced a .ppm image

with the result. These quantities were Vorticity (𝜁), the strength of vortical (a.k.a.

rotational) motion at each point in the grid; and Stream Function (𝜓), the contours

of which define streamlines. Streamlines are lines that are parallel to the velocity

vector at each point, allowing the long-term flow of particles to be represented with

a single line, and thus in a static image[64]. The quantities are defined by Eqs. (2.3.1)

and (2.3.2), as specified in [8]. Examples of these modes are shown in Fig. 2.3.1.

𝜁 (𝑥,𝑦) :=
𝛿𝑢

𝛿𝑦
− 𝛿𝑣

𝛿𝑥
(2.3.1)

𝛿𝜓(𝑥,𝑦)

𝛿𝑥
:= −𝑣, 𝛿𝜓(𝑥,𝑦)

𝛿𝑦
:= 𝑢 (2.3.2)

(a) Vorticity 𝜁

(b) Stream Function𝜓

(c) Pressure 𝑝

Figure 2.3.1: Examples of the three outputs available from the original visualization

18

The vorticity image in Fig. 2.3.1a competently shows which areas of the grid

contain particle movement. Unfortunately, near the edges of the obstacle circle

(shown in green) the edges are black, implying no movement or rotation, which

is incorrect and also a distracting artefact for the viewer. These are due to the

imprecise nature of the original code, which only uses the differences to the East

and South to find 𝜁 . This breaks down when the squares in these directions are

boundaries, and the program defaults to zero. A better solution would be to take

the central difference whenever possible and to fall back to using only one side

when adjacent to a boundary. This would mean the only points where this breaks

down are where a square is surrounded by boundaries on opposite sides, which is

very unlikely and would also likely break other areas of the simulation.

The Stream Function visualization (Fig. 2.3.1b) is nearly impossible to visually

parse, which makes sense as the velocity information is encoded in the differences

between adjacent squares and not directly in the colours. The Stream Function is

not intended to be directly visualized but instead used to find streamlines, which

can be visualized directly.

During program development, a third mode was added which directly visualized

the pressure values to aid in debugging, but this was not a very useful visualization

as seen in Fig. 2.3.1c. Pressure is only ever referenced in the Navier-Stokes equation

(and subsequently the algorithm) as a relative value. However, the simulation in

practice ends up increasing all cells by a small amount each iteration. This over-

all increase in pressure values is ignored by the simulation, but the visualization

doesn’t adjust for it. In this example, the pressure values have all increased so even

the lowest pressure value is a mid-grey. If the program simulated for too long,

the pressure values would become too high and the visualization would be entirely

white. This should be accounted for in the visualization, but also implies the base

simulation is unstable. The simulation stability will be touched on in the Results

and Evaluation (Chapters 9 and 10).

19

2.3.3 Current State-of-the-Art

The nature of this project required the visualizations to be rebuilt from the ground

up, both to work on the GPU correctly and to synchronize with the concurrent

simulation. This allowed new visualization features to be added. As a starting point,

the supported visualization features of Autodesk CFD 2019 were investigated, and

are outlined in Table 2.3.1. This section will explain these features in more detail.

Figure 2.3.2: Results Ribbon for Autodesk CFD 2019[65, Results Visualization]

Tool Type
Global Controls Visual

Planes Visual
Iso Surfaces Visual
Iso Volumes Visual

Particle Traces Visual
Wall Calculator Text

Parts Text
Points Text

Table 2.3.1: Summary of results tools from Autodesk CFD

Autodesk CFD is a 3D simulation and visualization program, typically involving

one or more 3D surfaces (a ’model’) and simulating the fluid movement around

these surfaces. The simulation process creates multiple quantities, including scalar

quantities Speed, Temperature, Pressure; and Vector quantities such as Velocity.

Global Controls[65, Global Controls] visualize selected quantities on all model

surfaces. A scalar quantity can be displayed by changing the surface colour ac-

cording to a scale (Fig. 2.3.3). A vector quantity can be displayed by creating small

arrows on the surfaces that represent the quantity’s direction and magnitude. The

range of displayed values can be changed for both the scalar and vector quantities.

A key limitation of this method is it only shows the quantities on the surface, not

20

Figure 2.3.3: Using the Global Controls to visualize a scalar result[66]

the quantities inside the fluid. Result Planes, Iso Surfaces, and Iso Volumes address

this by calculating new surfaces/volumes which visualize quantities.

Results Planes[65, Planes] define a flat cross-section of the model which can

visualize a single scalar quantity and a single vector quantity (Fig. 2.3.4).

Iso surfaces define a surface based on the value of a result scalar quantity, e.g.

𝑇 = 5 °C. This surface can then display a separate scalar and vector quantity, just

like a Result Plane (Fig. 2.3.5).

Iso volumes are similar to an isosurface but define a volume based on a value

range (0 °C ≤ 𝑇 ≤ 5 °C). A vector quantity can be displayed at points within the

volume, and the surfaces of the volume can show a scalar quantity.

Particle Traces show the path particles would take through the flow after being

emitted at certain points (or ‘seeds’). Autodesk allows these paths to be traced for-

wards or backwards, allows particles to be simulated both with mass and without,

and allows a variety of particle trails to be shown (Fig. 2.3.6).

21

(a) Scalar Quantity

(b) Vector Quantity

Figure 2.3.4: Result Planes displaying different types of Quantity

22

Figure 2.3.5: Example of an Isosurface, defined by a velocity magnitude and displaying static
pressure.

23

(a) Particle Comets (b) Particle Ribbons

(c) Particle Spheres

Figure 2.3.6: Examples of Autodesk particle trails.

24

Figure 2.3.7: MET Office weather report[67]

2.3.4 Stagnation & Composition

The techniques described above have been well known for at least 20 years. The

most prevalent algorithm for computing iso-surfaces was published in 1987[27].

Particle Traces and Results Planes were used in 1999[28], although this is not the

origin of either technique. In some cases, there has been extensive research into op-

timizing visualization techniques[29], and in domain-specific areas there is recent

academic research into creating new techniques[30], but research into new generic

visualization techniques has stagnated. This stagnationwas noted in [31] from 2004,

which concluded the primary challenges facing visualization were “identifying and

characterizing features” to visualize rather than developing new techniques. The

MET Office’s weather reports demonstrate this principle, and show that compos-

ing multiple techniques together can increase information density while remaining

easy to understand.

Fig. 2.3.7 shows at least three visualization techniques used in the same image,

each of which has been filtered to relevant points.

25

1. The large blue, orange, and mauve lines show weather ‘fronts’ moving in, the

blue line particularly shows a cold front moving in from the north-east.

2. The arrows show the wind direction, and only appear in areas with high wind

speeds. In the video they also move, making it easier to understand at a glance.

3. The gray and dark blue shape overlays show cloud cover and rain, respectively.

This proves the potential of combining multiple techniques, which was taken into

account when building the program.

2.3.5 Realtime Particle Simulation Techniques

The particle simulation element of our visualization doesn’t affect the simulation

content, and does not have to be completely accurate as long as the flow is ap-

proximately correct for the viewer. That is, the particle movement should fulfil

Fig. 2.3.8[32] for the following variables:

• 𝑝 = particle position.

• 𝑡 = time, and 𝑡 ∈ [𝑡1, 𝑡𝑛]where𝑛 = number of timesteps.

• ®𝑉 (𝑝, 𝑡) = fluid velocity at point 𝑝 and time 𝑡 .

𝑑𝑝

𝑑𝑡
= ®𝑉 (𝑝, 𝑡)

Figure 2.3.8: Equation for particle movement in unsteady flow

The unsteady-flow variant is shown because the fluid and particles will be mov-

ing at the same time, so the fluid itself is unsteady.

A common numerical method for accurately integrating this is the second-order

Runge-Kutta scheme with adaptive timesteps, described in [32]. This takes a con-

26

stant step size 0 < 𝑐 ≤ 1 which can be changed to control accuracy.

ℎ = 𝑐
 ®𝑉 (𝑝𝑘, 𝑡)

, 𝑝∗ = 𝑝𝑘 + ℎ ®𝑉 (𝑝𝑘, 𝑡),

𝑝𝑘+1 = 𝑝𝑘 + ℎ
(®𝑉 (𝑝𝑘, 𝑡) + ®𝑉 (𝑝∗, 𝑡 + ℎ))

2
,

𝑡 = 𝑡 + ℎ, 𝑘 = 𝑘 + 1 (2.3.3)

A key issue with implementing this method in the program is that ®𝑉 is only kept

in memory for one value of 𝑡 , so interpolating between ®𝑉 (𝑝𝑘, 𝑡) and ®𝑉 (𝑝∗, 𝑡 + ℎ) is

impossible. This also requires an indeterminate amount of steps, and potentially a

different amount of steps for each particle, which is not GPU friendly. Instead, a

simpler version was chosen based on the steady-state variant. At the instant the

particle is simulated, the fluid is modelled as steady, and the particle moves with

the same timestep taken by the simulation. To avoid particles stepping over cells

entirely, the timestep is subdivided into 4 iterations.

∀𝑖 ∈ [1..4] 𝑝𝑖 = 𝑝𝑖−1 + ®𝑉 (𝑝𝑖−1, 𝑡)/4 (2.3.4)

If 𝑝 does not align with a grid space, ®𝑉 (𝑝) is chosen using trilinear interpolation

between the closest grid cells as specified in [32].

In addition to the particle simulation, particles must also be spawned and de-

leted when necessary. GPU-based particle simulations are standard in video games,

which need to run at high frame rates just like our visualization, so their techniques

are a natural fit. Turánszki[68] proposed a three-phase model:

1. The kickoff phase, which determines the amount of new particles to create.

2. The emission phase, which adds the required amount of new particles to the

set by pulling from a queue of inactive particles.

3. The simulation phase, which updates particle positions, adds dead particles to

the inactive queue, and adds alive particles to a render queue.

This approach has been used in the final visualization.

27

2.3.6 Conclusions

The research outlined so far has established common visualization methods, the

potential for composing them together, and a design for an efficient particle sim-

ulation. This was used to design the visualization (Chapter 4) and informed the

implementation (Fig. 6.5.4).

28

CHAPTER 3

Ethical, Social, and Legal Issues

As predicted in the Specification and Progress Report, there have been no ethical or

social issues with the development of this simulation and visualization. The simu-

lation has been derived from code provided to the students for a coursework[59],

which itself is directly derived from a book[8] available at the Warwick Library.

The visualization is entirely original code, and the inspirations and research used

to design it have all been cited.

To ensure the work can be trusted, and to maintain professional standards, the

BCS Code of Conduct[69] has been followed. Professional standards were main-

tained during development, and research performed has been effectively referenced

to a high standard.

29

CHAPTER 4

Project Requirements

Ahead of initial development, a set of requirements were created to further specify

the project goals. These requirements evolved as more research was completed, for

example, the visualization-related requirements were only determined after visu-

alization research completed (see Chapter 7). This chapter shows the functional

and non-functional requirements, prioritized as eithermust-have or should-have.

Complex requirements have sub-requirements, which clarify certain features that

must/should be present for the top-level requirement to be met. The hardware and

software constraints for the program are also shown.

30

4.1 Functional Requirements

Functional Requirements define actions a program must/should be able to perform.

F1 The system must store simulation state in a file or set of files.

F2 The system must be able to load the initial state of a simulation from these

file(s).

F3 The system must be able to generate initial simulation state files.

F4 The system must be able to simulate from an initial state for a set amount of

time without visualizing.

F4.1 This modemust be able to store the final state to output file(s).

F5 The systemmust be able to simulate from an initial state for an indeterminate

amount of time while visualizing.

F5.1 This modemust allow the user to pause and resume the simulation.

F5.2 This mode should be able to save it’s state to output file(s) when reques-

ted.

F5.3 This mode should allow the user to manipulate the simulation or visual-

ization state while simulating.

F5.4 This mode should be able to run at a locked frame-rate.

F5.5 This mode should be able to run as fast as possible, without locking the

framerate.

F5.6 This modemust be able to perform at least one of Reqs. F5.4 and F5.5.

F6 Both methods of simulationmust be capable of using the GPU for simulating.

F7 The system must be able to compare how similar two simulation states are.

F7.1 This comparison should produce a binary SIMILAR/NOT SIMILAR ver-

dict using heuristics.

31

F8 The visualization must consist of multiple layers which can be individually

controlled.

F8.1 The visualization must always display a background layer which shows

the simulation obstacles in a different color to the fluid.

F8.2 The visualizationmust be able to display an optional scalar quantity (e.g.

pressure) using a color scale, where the value is within a user-defined

range.

F8.3 The visualization must be able to display an optional vector quantity

(e.g. velocity) using a vector field, where the magnitude is within a user-

defined range.

F8.4 The visualization must feature an optional particle simulation, where

particles are continuously emitted and move with the velocity of the field.

F9 Range-based quantities (Reqs. F8.2 and F8.3) should have an auto-range func-

tion to automatically calculate the range based on the values present.

F10 All colors used in the visualization (e.g. particle colors, the scalar color scale)

should be user-controlled.

F11 The locations of particle emitters should be user-controllable.

32

4.2 Non-Functional Requirements

Non-functional Requirements do not define actions, but rather define properties of

those actions or the program that must be met.

NF1 The system must be capable of operating on large datasets (e.g. 4096x4096

grids) without failing.

NF2 The system must be efficient and avoid wasting any resources allocated to it.

NF3 The simulation must produce similar results to the original simulation when

equivalent initial state is used.

NF4 The simulation should run at least 2x as fast as the original simulation when

equivalent initial state is used.

NF5 The visualized simulation must run in real-time at framerates ≥ 30 FPS for

some outputs.

NF6 The visualization features should not have a significant impact on the fram-

erate.

NF7 The visualized simulation should intuitively represent the fluid flow such that

it can be understood by someone unfamiliar with fluid simulation.

NF8 The particle simulation (Req. F8.4) should demonstrate advanced behaviour

to make the visualization more intuitive e.g. avoiding clumping.

NF9 The system must be fully documented and maintainable.

NF10 The system should have a simple guide to common operations for new users

to refer to.

NF11 The system should be fully compilable and executable from a DCS machine

with minimal extra installations.

33

4.3 Hardware and Software Constraints

As this simulation uses a GPU, the developer must have one available for debugging

and testing the program. As the CUDA API is used to implement the simulation

(see Section 6.1.3), the program requires an NVIDIA GPU to run. Due to COVID-

19 restrictions, the only hardware available to test the device was the researcher’s

GTX 1080, but it should function on all devices which support CUDA 10.

The high-speed rendering requirements of the program necessitated the use of

Vulkan over OpenGL. Vulkan gives the developer finer control over scheduling and

allows the hardware to take shortcuts that it may not be able to do under OpenGL.

For more on this decision see Section 6.1.3.

34

CHAPTER 5

Design

When building a large project it’s important to develop a consistent, logical, and

properly separated design; both to make initial development easy and to make it

intuitive for any future developers to understand. This applies to all aspects of the

program including the codebase (i.e. which classes exist and how they communic-

ate), how the program implements complex processes (such as the simulation/visu-

alization), and how the end user will eventually use the program.

This section first separates the codebase into layers and analyses them in order.

All notable design decisions for each layer are noted, and the means of interaction

between these layers are documented. The final section, for the Command-Line

layer, also documents the design of the command-line interface and the file formats

used to store simulation states.

5.1 Code Structure

The project structure, shown in Fig. 5.1.1, is split into four layers: Command-Line,

Visualization, Simulation, and Memory. Each element broadly represents a C++

class which depends on the classes defined below it.

35

Global Data Per-Frame Data

Vulkan Helper Classes

Fixed Time
Runner

Vulkan Ticked
Runner

Backends

FrameSetAllocator

FrameAllocator

Sim2DArray SimRedBlackArray

Parameterized on Memory Type

Vulkan
Pipeline

Simulation

Memory

Visualization

Command-Line

VulkanSimApp

Worker Thread

Vulkan
Fence

Vulkan
Buffer

Vulkan
Semaphore

Vulkan
Shader

Command-Line Parser

Sub-apps

Figure 5.1.1: Overall Code Structure

36

The Command-Line layer has a Command-Line Parser, which converts the in-

put command-line arguments to suitable representations, and a set of sub-apps im-

plementing the subcommands shown in Section 5.4. The figure shows all classes

relevant to the run subcommand, which shows a visualized simulation.

The Visualization layer contains a high-level VulkanSimApp class, which initi-

ates all visualization-related code. Beneath that, the Worker Thread handles most

Vulkan API calls, and depends on multiple sets of data built with Vulkan helper

classes. This layer uses classes from the Simulation layer, which are reused for the

headless simulation to avoid code duplication.

The Simulation layer consists of twomain elements: Runners and Backends. The

Runners use different strategies for invoking a Backend - the fixed-time Runner

runs the simulation flat out until a specific time is reached, and the Vulkan ticked

Runner runs the simulation for small timestepswhile synchronisingwith the visual-

ization. Each Backend implements the same functions, so Runner implementations

can be Backend-agnostic. The fixed-time Runner supports all defined Backends

(Section 5.2), but the Vulkan ticked Runner only supports the CUDA backend.

Finally, the Memory layer exposes APIs for the Backends to allocate simulation

memory. Runners decide how many ‘frames’ to create (see Section 5.2.2), and use

the FrameSetAllocator to create a set of FrameAllocators. The Backends use

each FrameAllocator to allocate a set of buffers, which are then used to store sim-

ulation data, represented with Sim2DArray and SimRedBlackArray instances. The

SimRedBlackArray splits a given grid size into two halves, storing red elements and

black elements separately, and can be configured to store an additional full matrix

(helpful for e.g. pressure, where both representations are useful).

All elements of the Memory layer are parameterized on the type of memory.

This can be CPU memory, CUDA Unified Memory, or Vulkan on-device memory.

The memory type affects not just the allocation method, but also the properties it

has e.g. CPUmemory cannot be accessed from the GPU. Using parameterized array

classes allows these differences to be expressedwhile keeping a consistent interface.

37

5.2 Simulation & Memory Layer

To allow easy comparisons between CPU and GPU simulations the program con-

tains multiple simulation backends. The headless and visualized simulations use a

--backend command-line option to allow the user to choose the backend from this

selection:

• Null, a backend which does no simulation for testing purposes.

• CPU Simple, equivalent to the pre-optimization CPU simulation.

• CPU Optimized, equivalent to the initial optimized CPU simulation, which

produces identical results to CPU Simple.

• CPU Optimized Adapted, a version of CPU Optimized slightly modified to be

closer to the GPU version.

• CUDA Backend V1, the only GPU-based backend.

The only modification present in the CPU Optimized Adapted backend is the

removal of double-precision floating-point logic, which is not present on the GPU

for speed concerns. It still isn’t identical to the CUDA environment, as CUDA ag-

gressively contracts floating-point operations to fused multiply-add while the CPU

compiler does not. The other CPU optimizations are present on the GPU where

possible: the residual check between each Poisson phase is still removed, and the

red-black data is still separated into separate arrays.

5.2.1 CUDA Design

The CUDA backend implements each stage of the simulation (Fig. 2.1.2) as one or

more CUDA Kernels. Each CUDA Kernel represents a computation for a single

grid cell, which is executed by a GPU thread. The grid is split into small ‘blocks’ of

threads, and the threads within each block are executed by a Streaming Multipro-

cessor (SM) in groups of 32 (a ‘warp’). Grid and block dimensions can be specified

38

in 1D, 2D, or 3D depending on the dimensionality of the problem. The program

uses a 2D grid for most kernels because each computation reads adjacent data in

2D space. Reduction kernels treat the 2D grid as a flat 1D array, because there is no

need to retrieve ‘adjacent’ data.

The CUDA backend must execute both with and without Vulkan, depending if

a visualization is used, which affects the type of memory used in the simulation.

When visualized, crucial data such as velocity and pressure are stored in shared

Vulkan-CUDA memory, to allow direct usage from both APIs without copying the

data. In all other cases CUDAUnifiedMemory is used, which can be paged between

the CPU and GPU on-demand without manually mapping it across[47]. This al-

lowed for granular debugging during development, as GPU kernels could be eas-

ily swapped out for known-correct CPU implementations without having to move

memory manually.

5.2.2 N-Buffering

When developing the Visualization, it was noted that keeping a separate copy of the

simulation output could allow the visualization to run in parallel with the simula-

tion1, without the simulation overwriting data currently being visualized. To allow

this, N-buffering was introduced to the simulation backends and aspects of the visu-

alization. Multiple ‘frames’ are stored, where each one contains all data used in a

simulation tick. Each simulation tick is assigned to a specific frame chosen by the

Runner, and only the data in this frame is written to. The last-written frame is then

used as the input for the next simulation tick. During a simulation of frame #N, all

other frames contain constant data and can be read out without any race conditions.
1This was unfortunately for other reasons discussed in Section 5.3.2

39

5.3 Visualization Layer

This section details the design employed to efficiently and effectively visualize sim-

ulation results in real-time.

5.3.1 Components

There are four major components of the visualization which work together to create

the final output.

• CPU 0 - The Main Thread, which handles the CUDA simulation.

• CPU 1 - The Worker Thread, which records and enqueues Vulkan commands.

• The GPU, which executes both the CUDA and Vulkan commands.

• The Swapchain, which provides render targets that are displayed in the applic-

ation window.

TheGPU itself has three phases of execution, performed sequentially for each frame

(Table 5.3.1). Each frame accesses a set of per-frame data, which is reused in a

circular buffer. Each phase for the frame will use this data.

Name Abbreviation
Simulation Sim
Visualization Compute (e.g. simulating particles) VizComp
Visualization Graphics VizGfx

Table 5.3.1: GPU Execution Phases, with abbreviations

A key design goal with the visualization was to maximize GPU utilization. The

CPU work is much less complicated than the GPU work, so the CPU should always

be able to keep the GPU fed with new work. If the CPU failed to do this, the GPU

would waste time idling when it could be doing useful work.

40

Kickoff
Worker Thread

N

Main
ThreadWorker Thread

GPU

Request
Swapchain

Sim Viz Comp Viz Gfx
Swapchain

Sim
N-1

Viz Comp
N-2

Viz Gfx
N-2

Viz Comp
N-1

Viz Gfx
N-1

Record
VizComp N,

VizGfx N

Enqueue
VizComp N,

VizGfx N

Wait for
Timestep N

Kickoff
Worker Thread

N + 1

Request
Swapchain

Record
VizComp N+1,

VizGfx N+1

Enqueue
VizComp N+1,

VixGfx N+1

Viz Comp
N

Viz Gfx
N

"Please make
an image
available"

Image for N-1
is available

Image for N
is available

"Please make
an image
available"

Sim
N+1

Enqueue
Sim N

Wait for
Timestep N+1

Enqueue
Sim N+1

Present N-2
on screen

Present N-1
on screen

Present N
on screen

Timestep N

Timestep N+1

Enqueue
Timestep N

Enqueue
Timestep N+1

Sim
N

Legend

Synchronous
Dependency

Asynchronous
Dependency

Frame N
(Per-Frame Data #0)

Frame N+1
(Per-Frame Data #1)

Frame N-1
(Per-Frame Data #1)

Frame N-2
(Per-Frame Data #0)

Wait for
resources

Wait for
resources

Figure 5.3.1: Timing Breakdown of four visualization frames, assuming two sets of per-frame data

41

5.3.2 Timing Breakdown

Fig. 5.3.1 shows a breakdown of multiple frames of simulation and visualization,

focusing on frame #N which is highlighted in red. It includes both synchronous

and asynchronous dependencies. A task with synchronous dependencies starts im-

mediately once all dependencies finish. A task with asynchronous dependencies

can only start once all dependencies are finished, but may not start until later.

The main thread begins by initiating the worker thread before handling the sim-

ulation. Before any CUDA work is enqueued, a semaphore is used to create a de-

pendency on a previous compute job (‘Viz Compute 𝑁 −2’). This compute cycle and

the incoming CUDAwork will access the same per-frame data2, so this dependency

prevents the simulation from writing to the data while the compute job reads from

it. For higher efficiency, this dependency could be inserted on ‘Sim 𝑁 ’ instead, but

it would not affect the results in practice.

The VulkanTickedRunner enqueues CUDA work to determine the maximum

timestep for the next tick (‘Timestep 𝑁 ’ in the diagram), waits to get the results

back on the CPU, and enqueues the rest of the simulation based on the calculated

timestep (‘Sim 𝑁 ’)3. If visualization requested a larger timestep than the calculated

maximum, the process would be repeated until the total requested timestep had

elapsed. Once ‘Sim 𝑁 ’ is finished, it signals a semaphore to allow ‘Viz Comp 𝑁 ’ to

continue the frame.

The worker thread uses the vkAcquireNextImageKHR function to ask the swap-

chain4 for an image. This returns the index of a swapchain image that will eventu-

ally become available, and a semaphore that will be signalled once this happens. Be-

fore ‘Viz Gfx 𝑁 ’ can render to this image, it has to wait for this semaphore to signal

it is ready. The thread thenwaits for frame𝑁−2 to finish using the Vulkan resources
in Resource Set 0 before it uses them to record ‘Viz Comp 𝑁 ’ and ‘Viz Gfx 𝑁 ’.

2Viz Gfx jobs don’t access the raw simulation buffers, so it doesn’t delay the simulation.
3‘Sim’ and ‘Timestep’ work are enqueued on the same CUDA stream, so they are implicitly ordered.
4The swapchain is a set of images provided by the OS that are shown in the windowing system

42

The Viz jobs use semaphores to guarantee ordering: ‘Viz Gfx 𝑁 ’ must start after

‘Viz Comp 𝑁 ’ finishes, which must start after ‘Sim 𝑁 ’ finishes. ‘Viz Comp 𝑁 ’ also

has to wait for ‘Viz Gfx 𝑁 − 1’ to finish to avoid race conditions - all ‘Viz Comp’

and ‘Viz Gfx’ jobs share global memory instead of per-frame memory to avoid data

copying. Once ‘Viz Gfx 𝑁 ’ finishes, it signals a semaphore to tell the swapchain/OS

to present the newly rendered frame to the screen. The worker thread records and

enqueues the above work for the GPU. Once the worker thread has finished it sig-

nals the main thread, and once the main thread finishes enqueueing ‘Sim 𝑁 ’ the

process restarts.

It’s worth noting that based on these dependencies some GPUwork could theor-

etically run in parallel, such as ‘Viz Comp 𝑁 ’ and ‘Timestep 𝑁 − 1’. Unfortunately,

in practice this doesn’t happen. Running parallel compute workloads is only sup-

ported on NVIDIA GPUs from the Ampere generation onwards[33], such as the

RTX 3000 series, and is not supported on the researcher’s GTX 1080. This also

affects the work breakdown, preventing smaller pieces of work (such as computa-

tions for separate visualization layers) from running in parallel. In the future, this

could be mitigated by using an Ampere-level GPU, or by running the simulation

and visualization on separate GPUs.

Synchronization

Implementing the unlocked framerate (Req. F5.5) without running the simulation

faster than real-time required the time taken for each frame to be measured. This

is approximated by measuring the time between ‘Kickoff Worker Thread’ tasks on

the CPU. Using this, the program predicts how long a simulation frame would take,

and combines that with the requested simulation rate5 to predict if the next frame

should be a simulation frame.

This restriction can be removed, to run with an unlocked simulation rate, in

which case the average time per simulation frame is chosen as the timestep for the
5e.g. 120 simulation ticks per second

43

next simulation tick. This is capped with sensible minimum/maximum limits to

avoid instability from outliers.

5.3.3 Visualization Work Breakdown

As specified in the Requirements (Chapter 4) the selected visualization layers are

the Background, Quantity-by-Scalar, Quantity-by-Vector, and Particle Simulation.

The Background and Quantity-by-Scalar layers are visualized at the same time for

simplicity. Accounting for this, the breakdown of required work for each layer is

shown in Fig. 5.3.2.

The Compute sections are implemented using Vulkan Compute Shaders[56],

which are nearly equivalent to CUDAKernels and are invoked similarly. TheGraph-

ics sections are implemented using Vertex and Fragment Shaders, where the Vertex

Shader determines the onscreen positions of the vertices that make up a model, and

the Fragment Shader determines the colour of the onscreen pixels between those

vertices.

Extract
Quantity

Find min/max
(Optional)

Extract
Quantity

Find min/max
(Optional)

Create Vector
Instances

Decide Particles
to Emit

Emit new
Particles

Simulate
Particles

Draw
BG & Quantity

Draw
Vectors

Draw
Particles

Compute Graphics

Scalar Quantity

Vector Quantity

Particles

Interpolate Simulation Data

Composite
with GUI

Pre-Layer Work

Post-Layer Work

Figure 5.3.2: Visualization Work Breakdown

44

Data Interpolation

The simulation stores data on a staggered grid (Fig. 2.1.1), but this is inconvenient

for the visualization. The first step of the visualization is to move the exposed sim-

ulation data into a 2x resolution texture, applying interpolation where necessary,

allowing the GPU to sample the exposed data at arbitrary points using the texture

filtering hardware. This applies trilinear interpolation, as required for the particle

simulation.

Auto-ranging

BothQuantity-by-Scalar andQuantity-by-Vector have an optional auto-rangemode,

where the minimum and maximum values for the quantity are calculated and used

instead of the user-defined range. This requires a GPU reduction, which is im-

plemented in Vulkan just like it is in CUDA, using the second kernel of [24]. To

simplify the rendering code, in both cases the selected quantity is extracted to two

buffers using a specialized compute shader. The first buffer includes the quantity

with a ‘fluidmask’ which shows if the selected pixel is a fluid or obstacle, and is

used for the rendering along with the reduction result. The second buffer is used

for the reduction, and contains a min/max property for each element.

Indirect Instanced Rendering

For Quantity-by-Vector and the Particle Simulation, the final outputs are rendered

using Instanced Rendering. The same model is rendered 𝑁 times, and the Vertex

Shader uses an ‘instance index’ 0 ≤ 𝑖 < 𝑁 to look up the instance’s position/ori-

entation. This method is much faster than rendering each instance separately, as it

requires fewer draw calls on the CPU.

When recording the command buffer on the CPU, the number of instances for

both layers is not yet known. ForQuantity-by-Vector, the number of vectors is de-

pendent on the simulation output. The previous visualization phase may kill some

particles, so the particles cannot be predicted either. To mitigate this, Indirect in-

45

Original Model

Instanced Result

Position = 0.9, 0.6
Rotation = 45
Scale = 1.1

Position = 0.1, 0.1
Rotation = -15
Scale = 1.5

etc

Instance Data

Figure 5.3.3: Instanced Rendering Demonstration

vocations are used for the vector/particle rendering and the particle simulation.

Instead of specifying the instance count at record time, a reference to a GPU buffer

is used. This GPU buffer contains the required parameters for the instanced ren-

dering/compute dispatch, and can be atomically written by the GPU in a separate

compute shader.

Creating new vectors/particle instances is done safely on the GPU using grow-

able lists and atomic variables. Each growable list consists of an array of values with

amaximum length, and a ‘current size’ variable. When a value is added, the ‘current

size’ variable is incremented atomically, and the pre-increment value is then used

to index the array and write the new instance parameter. When a value is removed,

the ‘current size’ variable is decremented atomically, and the post-increment value

can be used to see the deleted index. Within a compute shader invocation, a list can

only be growable or shrinkable but cannot be both. Despite this limitation, the lists

are suitable to implement the technique from [68].

Final Composite

As a final step, the visualization output is rendered with the other GUI elements.

This step is controlled by the Dear ImGUI library (see Section 6.1.3). An example of

the visualization GUI is shown in Fig. 5.3.4.

46

Figure 5.3.4: Example of the Visualization GUI

47

5.4 Command-Line Layer & Program Usage

The compiled binary uses a command-line interface to configure and run one of

many subcommands available. These subcommands are:

• makeinput, which generates simulation input files, fulfilling Req. F3.

• fixedtime, which runs a headless simulation for a fixed time, fulfilling Req. F4.

• compare, which compares two simulation states for equality (see Section 5.4.3),

fulfilling Req. F7.

• renderppm, which visualizes a static simulation state using the techniques

from Section 2.3.2.

• run, which starts a real-time visualized simulation, fulfilling Req. F5.

Splitting the program into subcommands was inspired by Git[70], and avoids creat-

ing separate binaries for each operation. Each subcommand can be configured with

command-line options conforming to POSIX standard[71]. Examples of using the

program are in Fig. 5.4.1.

Create an input file based on simple_layout with a size of 1x2 metres

./sim_cuda makeinput ./simple_layout.png 1 2 ./initial.bin

Run it in headless mode for 10 seconds

./sim_cuda fixedtime --backend=cuda ./fluid.json ./initial.bin 10 -o ./output_after_10.bin

Compare it to the expected output

./sim_cuda compare ./output_after_10.bin ./expected_after_10.bin

Render it out to an image

./sim_cuda renderppm ./output_after_10.bin zeta ./output_after_10.ppm

Try visualizing it in real-time

./sim_cuda run --backend=cuda ./fluid.json ./initial.bin

Figure 5.4.1: Example usage of the simulation program

48

5.4.1 Generating Inputs

The makeinput subcommand allows input simulation states to be generated from

image files. Each pixel of the input image represents a cell of the grid, not includ-

ing padding cells, where non-black pixels denote obstacle cells and all other cells

are fluid. The example in Fig. 5.4.2 shows an example file denoting a rectangular

obstacle, and the visualization of the generated state.

(a) Base Image

(b) Simulation

Figure 5.4.2: Example conversion of an image to a simulation state

Velocities and pressure in every cell can be interpolated horizontally - 1m/s east

at the left edge, 0m/s at the right. This alleviates simulation instability near obstacle

edges, an advantage over having a constant initial velocity across the field. One

such instability would be a situationwhere fluid is occluded from the input direction

by an obstacle, but moves east anyway with no reason to do so.

The exact initial value of pressure is inconsequential as the simulation only cares

about the difference between cells. The pressure can be set to 0 at all points, rep-

resenting a constant pressure across the simulation grid. This is inconsistent with

the nonzero velocities mentioned above, but applying variable pressure made the

system more unstable.

49

5.4.2 File Formats

To fulfil Req. F1 two file formats have been defined to store simulation data and

parameters.

Fluid Parameters

Parameters that are characteristic of a particular fluid or simulation type are stored

in a “Fluid Parameters” file. This includes the Reynolds number, the timestep safety

factor, and the maximum iteration count for the Poisson solver. They are stored in

a JSON format to be human-readable, are reusable for different simulation states,

and can be easily edited by the end user. An example is shown in Fig. 5.4.3.

{

"Re": 150.0,

"initial_velocity_x": 1.0,

"initial_velocity_y": 0.0,

"timestep_divisor": 60,

"max_timestep_divisor": 480,

"timestep_safety": 0.5,

"gamma": 0.9,

"poisson_max_iterations": 100,

"poisson_error_threshold": 0.001,

"poisson_omega": 1.7

}

Figure 5.4.3: Example Fluid Parameters file

Simulation State

Data unique to an individual state such as simulation resolution, physical size, and

velocity fields are stored in a binary format reused from the original simulation.

As the data is much more sensitive to individual modifications6, it makes more

sense to store this data in a binary format where it cannot be easily modified by a

user. Additionally, the binary format is much smaller than any text-based format,

which helps as the volume of data stored is much larger than that stored in the fluid

parameters.
6For example, changing a single value in the velocity field can introduce discontinuities.

50

Theheader consists of a pair of unsigned 32-bit integers specifying the resolution

of the simulation, and a pair of 32-bit floating-point numbers specifying the physical

dimensions of the simulation. From there, four sets of data for each column are

stored, including the boundary padding squares:

1. Horizontal Velocity 𝑢 (float32)

2. Vertical Velocity 𝑣 (float32)

3. Pressure 𝑝 (float32)

4. Cell Flags, defining which adjacent squares are boundaries (uint8)

This structure is somewhat unintuitive and error-prone, an example being the Cell

Flags which may end up being inconsistent between adjacent cells, but it has been

kept for the sake of compatibility with the original simulation.

5.4.3 Comparison Heuristics

In the compare subcommand heuristics are used to judge if one simulation is ac-

curate and precise with respect to the other. This does not quite fulfil Req. F7.1, as

there are two results and two heuristics used instead of just one, but it is useful for

comparisons regardless so was not changed.

This assumes one of the supplied states is a known-valid simulation state, and

the other is not. The velocity and pressure values𝑢, 𝑣, 𝑝 of the two simulation states

are compared separately. The simulation states must be of the same size and use

the same obstacle squares.

The comparison is performed by calculating the mean and standard deviation

of the square error between the datasets. These are then compared to tolerance

values to produce two binary outputs: ACCURATE if the mean is below tolerance,

and PRECISE if the standard deviation is below tolerance. Examples are shown in

Fig. 5.4.4.

51

The tolerance for the mean was derived from an expected error magnitude of

±10−7, which was squared to produce 10−14. It is assumed that the standard devi-

ation should always be smaller than the mean, so the tolerance for standard devi-

ation is also 10−14.
Velocity X:

Sq. Error Mean: 0 ACCURATE

Sq. Error Std. Dev: 0 PRECISE

Velocity Y:

Sq. Error Mean: 0 ACCURATE

Sq. Error Std. Dev: 0 PRECISE

Pressure:

Sq. Error Mean: 0 ACCURATE

Sq. Error Std. Dev: 0 PRECISE

(a) Comparison of Equal States

Velocity X:

Sq. Error Mean: 0.0233842 INACCURATE

Sq. Error Std. Dev: 0.0996487 IMPRECISE

Velocity Y:

Sq. Error Mean: 0.00566354 INACCURATE

Sq. Error Std. Dev: 0.0139529 IMPRECISE

Pressure:

Sq. Error Mean: 0.0214799 INACCURATE

Sq. Error Std. Dev: 0.0511252 IMPRECISE

(b) Comparison of Unequal States

Figure 5.4.4: Examples of outputs from the comparison tool

52

CHAPTER 6

Implementation

Building the program was a huge technical challenge on many levels, resulting in

8.5k lines of code spread over 146 files in three different programming languages.

Solving themore complicated problems required some interesting tricks whichmay

have interacted with lesser-known language features, memory models, and in one

case the particulars of the C++17 specification. The correctness of the resulting

programwas then ensured through the use of other features, including C++ macros

and files that crossed language boundaries1. This chapter documents these tricks

and the background needed to understand them.

The first section contains an overview of relevant C++ features, and some other

concepts employed while developing the program. The next section focuses on

Code Safety, detecting any faults during compilation and then ensuring any other

faults do not then manifest into problematic errors. As in the Design section, each

layer of the codebase is then examined and all interesting problems solved during

development are documented.
1See Section 6.5.3.

53

6.1 Preliminary Work & Background

The primary languages used in the program are C++17 and CUDA. This section

will explain key elements of C++17 used in the program, the build system, and the

external libraries used.

6.1.1 C++ Primer

Virtual classes use virtual functions to allow subclasses to override behaviour in the

parent. The seminal example is creating a parent class Animal that can talk(), and

a subclass Dog that overrides talk() to bark. When a virtual function is called on

an object, instead of statically determining which function to call at compile-time,

the vtable of the object is read out at run-time with the correct function pointer[34].

In Java and Python all functions are considered virtual, but in C++ virtual behaviour

can be selectively enabled. As each virtual function call requires multiple indirec-

tions (object → vtable → function), the performance is slightly worse than using

normal functions (see Fig. 6.1.1). Virtual functions are avoided where possible in

the codebase.

One of C++’s greatest innovations over C is the template system. Classes and

functions can be ‘templated’ on types or values, and then ‘instantiated’ when these

parameters are known. When such a class or function is instantiated a complete

copy is created with the new parameter values, which is compiled and optimized

separately from any other instantiations. Some classes can also be “specialized” to

implement custom behaviour for specific parameter values. This is useful for en-

coding extra information in a type for safety, e.g. VulkanShader<Vertex> cannot

be passed to a function expecting VulkanShader<Compute> because they’re inde-

pendent types. It’s also useful for static function dispatch, as instead of taking a

virtual class with a talk() function you can instead template a function on the

type of animal it uses, and call the function directly. This technique is used in the

Simulation to efficiently use Backends.

54

class Animal {

public:

virtual void talk() = 0;

virtual ~Animal() = default;

};

class Dog : public Animal {

public:

void talk() override {

printf("bark\n");

}

void talk_static() {

printf("bark\n");

}

~Dog() override = default;

};

int main() {

// Virtual call

Animal* animal = new Dog();

animal->talk(); // Prints 'bark'

delete animal;

Dog dog = {};

dog.talk_static();

return 0;

}

(a) C++ implementation

Calling the function virtually

(animal->talk())↩→

mov rax, QWORD PTR [rbp-24]

mov rax, QWORD PTR [rax]

mov rdx, QWORD PTR [rax]

mov rax, QWORD PTR [rbp-24]

mov rdi, rax

call rdx

Calling the function statically

(dog.talk_static())↩→

lea rax, [rbp-32]

mov rdi, rax

call Dog::talk_static()

(b) x86 Assembly for calling the functions

Figure 6.1.1: Inefficiencies of virtual inheritance
(x86 assembly code generated from https://godbolt.org/z/PfEq3TPdn)

55

https://godbolt.org/z/PfEq3TPdn

class Dog {

public:

void talk() {

printf("bark\n");

}

};

class Cat {

public:

void talk() {

printf("meow\n");

}

};

template<class TAnimal>

void make_animal_talk(TAnimal* animal) {

animal->talk();

}

int main() {

Dog dog{};

// Instantiates make_animal_talk<Dog>,

which calls Dog::talk statically↩→

make_animal_talk<Dog>(&dog);

Cat cat{};

// Instantiates make_animal_talk<Cat>,

which calls Cat::talk statically↩→

make_animal_talk<Cat>(&cat);

return 0;

}

void make_animal_talk<Dog>(Dog*):

...

mov rax, QWORD PTR [rbp-8]

mov rdi, rax

call Dog::talk()

...

void make_animal_talk<Cat>(Cat*):

...

mov rax, QWORD PTR [rbp-8]

mov rdi, rax

call Cat::talk()

...

Figure 6.1.2: Using templates for polymorphism
(x86 assembly code generated from https://godbolt.org/z/hfM465EYa)

“Typeclasses”

In other languages, like Haskell, a typeclass defines some behaviour a class should

fit. From [35]: “If a type is a part of a typeclass, that means that it supports and im-

plements the behaviour the typeclass describes”. C++17 does not have a convenient

way of denoting this but it is incredibly helpful when building generic code with

templates, as it allows the generic code to make assumptions about what behaviour

types will support. The rest of this chapter will define typeclasses where convenient

to describe behaviour shared by certain classes.

56

https://godbolt.org/z/hfM465EYa

6.1.2 Build System

The build system is implemented in CMake as specified in Section 7.3. This sec-

tion highlights a few changes that were made to an otherwise standard setup to

accommodate the project.

CUDA-less Binaries

The project can be built to produce both CUDA and CUDA-less binaries, in case it

needs to be run on computerswithout CUDA.The list of regular C++ source files and

CUDA source files are maintained separately. A CUDA-less binary (sim_nocuda)

will only build the C++ files while a CUDA binary (sim_cuda) will build both. When

building with CUDA support the preprocessor macro CUDA_ENABLED is defined in

all source files, including the C++ files. This allows support for CUDA backends

in C++ code (i.e. as selectable options on the command-line) to be conditionally

enabled without maintaining two copies of the relevant source files. In Fig. 6.1.3

(which has been amended for brevity), the switch statement only contains a case

for CUDA if the directive is set, triggering a fatal error otherwise. The enumeration

defining the existing Backends also uses this technique to completely remove the

concept of a CUDA backend from non-CUDA builds.

switch(backendType) {

case Null:

return SimFixedTimeRunner<NullSimulation, Host2DAllocator>();

case CpuSimple:

return SimFixedTimeRunner<CpuSimpleSimBackend, Host2DAllocator>();

case CpuOptimized:

return SimFixedTimeRunner<CpuOptimizedSimBackend, Host2DAllocator>();

case CpuAdapted:

return SimFixedTimeRunner<CpuOptimizedAdaptedSimBackend, Host2DAllocator>();

#if CUDA_ENABLED

case CUDA:

return SimFixedTimeRunner<CudaBackendV1<true>, CudaUnified2DAllocator>();

#endif

default:

FATAL_ERROR("Enum val %d doesn't have an ISimFixedTimeRunner!\n", backendType);

Figure 6.1.3: Conditionally supporting CUDA based on a preprocessor directive

57

Shader Build Infrastructure

The shaders used for visualization are written in GLSL, with appropriate extensions

to be compatible with Vulkan. They are separated by file type, with Vertex shaders

in .vert files, Fragment shaders in .frag files, and Compute shaders in .comp

files. As Vulkan does not natively support GLSL, they must be compiled to SPIR-V

before they can be used. CMake does not support GLSL as a first-class language,

so a custom build command was used to compile them with glslc[72] when they

change. This allows them to be treated just like any other source file from the

programmer’s perspective. SPIR-V files are placed in a shaders directory next to

the binaries, where they can be easily accessed and passed to Vulkan.

6.1.3 Library Selection

OpenGL Vulkan
OpenCL Y N
CUDA Y Y

OpenGL Y N
Vulkan N Y

Figure 6.1.4: Graphics and Compute Backend Interoperability Matrix

CUDA and Vulkan have been chosen as backends, but other backends were also

considered. As the simulation would have to run on DCS systems (Req. NF11) and

thus run on Linux, the only possible GPU rendering backends were OpenGL and

Vulkan. However, there were still multiple choices of compute backend:

• OpenCL[54] is an “Open Standard for Parallel Programming of Heterogeneous

Systems”[57].

• CUDA[48] is a proprietary library for running parallel code on NVIDIA GPUs.

• OpenGL has Compute Shaders[55] which can execute computations outside

of the graphics pipeline.

• Vulkan also has Compute capability[36], similar in function to OpenGL.

58

To decide on the compute backend to use, an interoperability matrix was drawn

(Fig. 6.1.4) to show which libraries could share data without copying it between

buffers. As the researcher was already experienced with Vulkan, and the more

granular control it provides would be beneficial to performance, Vulkan was se-

lected as the rendering backend. This prevented OpenCL and OpenGL from being

used as compute backends, as they are not compatible with Vulkan. CUDA and

Vulkan have comparable ability, but CUDA was chosen as the compute backend.

The Vulkan compute shaders are still a very graphics-oriented view of computation,

and CUDA would give the researcher experience with other kinds of libraries. A

Vulkan compute backend is used for the visualization portion of the code.

In other cases, there were clear choices: the SDL2[73] window and input library

and the Dear ImGUI[74] UI library were chosen due to personal experience. The

stb_image.h header was found to be a simple method of importing image colour

data as byte arrays, used for the input generator (Req. F3).

There are a great many options for Command-Line parsing libraries, even more

so because C++ is used instead of C. A recent survey of the possibilities[75] was

whittled down to five options.

getopt[76], argp[77], and gopt[78] are C libraries that use arrays of structures

to define the required arguments. Of them, only argp can automatically generate

a --help argument, which is a very valuable feature. cxxopts[79] was considered

as a C++ alternative but used very odd syntax for defining arguments. Ultimately

CLI11[80] was chosen as a modern C++11 library that had native support for sub-

commands, which were used heavily for separating program components (see Sec-

tion 5.4).

59

6.2 Code Safety

No program is faultless, and when faults manifest during execution it’s important

to ensure they have a minimal effect on their surroundings. This program includes

many means of detecting errors both at compile-time and run-time to ensure its

dependability.

The G++ flag -Wall enables many warnings that are emitted at compile-time

if potential errors are detected. Unlike some other languages (i.e. Verilog) these

warnings are generally reliable and it is feasible to build a C++ program that com-

piles without any warnings. To ensure this the -Werror flag is added to upgrade

these warnings to compilation errors, ensuring a program which compiles will be

warning-free2.

Runtime errors are detected with a set of C++ macros that check if required con-

ditions are met. As there is no liveness requirement for the program, failure triggers

an immediate program exit to avoid errors propagating through the system. The

DASSERT family of macros are included only in Debug builds, and the FATAL_ERROR

family of macros test both in Release and Debug. Both families print a message

including the file and line of code that triggered the error, and any other relevant

debug information. These families are also integrated with the CHECKED_CUDA and

CHECKED_VULKANmacro families, which surround CUDA/Vulkan function calls and

check the returned error codes. An example is shown in Fig. 6.2.1.

The final tool for error detection is the Vulkan Validation Layer. This is a stand-

ard Vulkan extension which checks each Vulkan call to ensure the Vulkan spe-

cification [56] isn’t violated. These checks are very in-depth, and are a must-have

when debugging visualization errors. The base Vulkan functions don’t do this er-

ror checking for efficiency’s sake, and the program disables these layers in Release

mode for the same reason.
2Some warnings, such as those from -Wextra and those relating to unused variables and parameters, are usually

benign so weren’t upgraded.

60

if (value == unexpected) {

FATAL_ERROR(

"Unexpected Value %d\n",

value

);

}

// equivalent to

FATAL_ERROR_IF(

value == unexpected,

...

);

// or

FATAL_ERROR_UNLESS(

value != unexpected,

...

);

// Same, but only fails in Debug builds

DASSERT(value != unexpected);

(a) Example of assertion macros

cudaError_t error = cudaDeviceSynchronize();

FATAL_ERROR_IF(error != cudaSuccess);

// Equivalent to

CHECKED_CUDA(cudaDeviceSynchronize());

auto result = vkDeviceWaitIdle();

FATAL_ERROR_IF(result != vk::Result::eSuccess);

// Equivalent to

CHECKED_VULKAN(vkDeviceWaitIdle());

(b) Example of API failure safety macros

Figure 6.2.1: Examples of error safety via macros

6.2.1 Smart Resource Classes

All memory allocations, CUDA objects, and Vulkan objects follow the same al-

locate/release pattern. They are not destroyed automatically when they go out of

scope, but must be released manually. This is an error-prone process, as a program-

mer may forget which resources need to be released or try to release a resource

twice.

Smart resource classes alleviate this by tying the resource lifetime to a C++ ob-

ject, using the object destructor to release the resource. The prime example of this

is std::unique_ptr<T>, which holds a T* object and free()-s it when the object

leaves scope (Fig. 6.2.2). However this does not easily map to other deletion meth-

ods, and the pointer adds an unwanted extra level of indirection. vulkan.hpp, in-

cluded in the Vulkan SDK, includes similar classes for each type of Vulkan resource,

but still requires a lot of boilerplate to initially create objects3. In some cases, it’s

also more convenient to store multiple resources together, such as a buffer and the
3Vulkan objects require a full CreateInfo struct to create, rather than taking function arguments.

61

// Manual handling

{

auto* semaphore = new Semaphore();

// do things with semaphore...

delete semaphore;

}

// Automatic handling

{

std::unique_ptr<Semaphore> semaphore = std::make_unique<Semaphore>();

// do things with semaphore...

// automatically deleted

}

Figure 6.2.2: Example of memory management with C++ standard classes

device memory it uses, which cannot be directly achieved with either method. To

solve these problems custom smart resource classes are implemented for individual

resources and aggregates, with more convenient constructors (see Appendix A).

These smart classes are affected by C++ copy/move semantics. C++ allows ob-

jects to be copied with a copy-constructor, or moved with a move-constructor. The

resource objects should not be copyable as it would become unclear which copy

would be responsible for destroying the resource. The copy-constructor can be de-

leted to prevent this, but the move-constructor is useful for transferring ownership

e.g. from a resource factory to the person using the resource.

When an object is moved, the original version should forget the data it’s holding

and give it to the new object. C++ can generate this constructor automatically, but

this “default move-constructor” will just copy the data across if the data is Trivially-

Copyable[81]. All pointers and CUDA handles are TriviallyCopyable, so they don’t

get forgotten automatically. Manually writing each move-constructor to address

this would be error-prone, so instead the ForgetOnMove<T> class is used to wrap

these values and automatically forget them when the move-constructor is invoked.

The final result is shown in Fig. 6.2.3: a clean, easy, and safe method of implement-

ing new smart resource classes.

62

// Doesn't use ForgetOnMove<>

class ComplexWrapper {

void* memoryPointer;

// Constructor

ComplexWrapper(size_t memorySize) {

// Allocate memory

}

// Destructor

~ComplexWrapper() {

if (memoryPointer != nullptr) {

// Free memory

}

}

// Copy constructor - deleted

ComplexWrapper(const ComplexWrapper&) = delete;

// Move constructor - complicated

ComplexWrapper(ComplexWrapper&& movedFrom) {

this->memoryPointer = movedFrom.memoryPointer;

movedFrom.memoryPointer = nullptr;

}

};

// Uses ForgetOnMove<>, is simpler

class SimpleWrapper {

ForgetOnMove<void*> memoryPointer;

// Constructor as before

SimpleWrapper(size_t memorySize) {

// Allocate memory

}

// Destructor as before, but checks if the memoryPointer is present

~SimpleWrapper() {

if (memoryPointer.has_value()) {

// Free memory

}

}

// Copy constructor - deleted

SimpleWrapper(const SimpleWrapper&) = delete;

// Move constructor - defaulted!

// We don't have to write this in full

SimpleWrapper(SimpleWrapper&&) = default;

};

Figure 6.2.3: Automatic forgetting with ForgetOnMove<T> vs. manual handling

63

6.3 Memory Layer

As mentioned in the Design section, all elements of the Memory system are para-

meterized on the memory type. This was accomplished by creating an enum MType

and a set of classes templated on it (Fig. 6.3.1). These templates were then spe-

cialized for each type of memory, implementing the logic for each type separately.

Separate implementations were required due to the unique constraints and alloca-

tion methods of each memory type.

enum MType {

CPU,

Cuda,

VulkanCuda

};

enum RedBlackStorage {

RedBlackOnly, // Just store the red and black matrices

WithJoined // Store the red, black, and combined matrices

};

typeclass DataArray {

// Has a static value MemType telling you what memory type it takes

static MType MemType;

// Has a function for calculating the total bytes used for a matrix

static size_t sizeBytesOf(Size<uint32_t> size);

}

class Sim2DArray<T, MType> fits DataArray;

class SimRedBlackArray<T, MType, RedBlackStorage> fits DataArray;

typeclass FrameAllocator<MType> {

// Function for allocating a 2D array

Sim2DArray<T, MType> allocate2D(Size);

// Function for allocating a red/black array

SimRedBlackArray<T, MType, RBStorage> allocateRedBlack(Size);

}

typeclass FrameSetAllocator<MType, TFrame> {

std::vector<TFrame> frames;

}

Figure 6.3.1: Memory Layer Typeclasses

64

6.3.1 Array Handles

The Sim2DArray<...> and SimRedBlackArray<...> classes represent handles to

2D arrays of values of arbitrary types. Both implement a common DataArray type-

class (Fig. 6.3.1). They do not own the data they point to, so if a Sim2DArray is

destroyed the referenced memory isn’t freed. Freeing memory is handled by the

FrameAllocator instead.

SimRedBlackArray serves as an aggregate of Sim2DArrays, without defining

any special behaviour. It does not specialize on the memory type, but provides two

storage variants RedBlackOnly and WithJoined (Fig. 6.3.1).

Sim2DArray implements a set of functions for accessing data from the CPU,

CUDA, and Vulkan. These functions are only present if that access type is sup-

ported, so trying to use an unsupported function results in a compile-time error.

Other generic operations are also supported such as zeroing out memory, copying

memory in from different sources, and copying memory out to the CPU. Each of

these is implemented differently based on the memory type, and may not be im-

plemented if the operation is impossible. For example, attempting to ‘prefetch’, i.e.

move CUDAUnifiedMemory to the GPU before usage, is only supported for CUDA

Unified Memory and not the other types.

6.3.2 FrameAllocator

FrameAllocator<MType> is an allocator associated with a single memory frame.

The behaviour is specialized for each memory type, but each specialization fits a

typeclass (Fig. 6.3.1) for allocating 2D and red-black arrays. The FrameAllocator

owns these allocations, and when it is destroyed the allocations are freed. The CPU

and CUDA Managed memory variants allocate data directly using their respective

allocation functions when requested, store the raw pointers in a list, and frees all

of them on destruction.

The Vulkan variant allocates a fixed amount of Vulkan device memory, which

is exported using the CUDA-Vulkan interop API to a CUDA-compatible pointer.

65

All new allocations are then sub-allocated from this memory. The fixed amount

is calculated by the FrameSetAllocator, which assumes only the bare minimum

(𝑢, 𝑣, 𝑝, 𝑓 𝑙𝑢𝑖𝑑𝑚𝑎𝑠𝑘) requirements are allocated in Vulkan. The associated CUDA

pointer is not compatible with Unified Memory, so cannot be paged to the CPU.

6.3.3 FrameSetAllocator

FrameSetAllocator<MType, TFrame> creates a set of TFrame objects which are

each allocated using separate FrameAllocator<MType> objects. The simple CPU

and CUDA variants simply construct 𝑁 TFrames using 𝑁 FrameAllocators. The

Vulkan variant is more advanced as it has to check the TFrame exposes the correct

data, calculate the amount of Vulkan data to allocate per frame, and expose this

data by implementing a virtual VulkanFrameSetAllocator interface. The Vulkan

variant also passes in a CUDA FrameAllocator with the Vulkan one to allow the

other buffers to be allocated.

6.3.4 Usage in Other Layers

The Simulation layer instantiates FrameSetAllocators in the simulation Runners.

TheBackend typeclass (Fig. 6.4.1) requires each backend to implement a Frame class,

and to take a list of Frame instances as an argument to their constructor.

The visualization uses the VulkanFrameSetAllocator interface to grab refer-

ences to simulation memory, which it uses while rendering.

66

6.4 Simulation Layer

As shown in the Design section, the Simulation layer is split into generic Runners

and multiple simulation Backends. Building a system that efficiently allowed Run-

ners to be Backend-agnostic while remaining performant was nontrivial.

6.4.1 Runners

Runners had three major design constraints:

1. Runners should be generic with respect to the backends they implement.

2. The same Runner should have the same interface for each Backend it imple-

ments.

3. Virtual functions should be avoided where possible.

The immediate thought would be to implement a single Runner class, taking a vir-

tual Backend class and using virtual functions to start each tick. This would meet

(1) by using a virtual Backend interface, and (2) by using the same class for all

Backends, but would violate (3) by forcing every Backend to use virtual function

calls. Instead, a slightly more complex approach is taken.

Each Runner defines a virtual interface, such as IFixedTimeRunner for the fixed

time runner. A templated implementation class SimFixedTimeRunner is then

instantiated for each compatible backend B. Each of these classes implements the

virtual interface IFixedTimeRunner, but they call the simulation functions directly

as they are templated on the backend type. This setup meets (1) by using a single

templated implementation, (2) by implementing a virtual interface, and (3) by only

using the virtual functions where absolutely necessary i.e. on the Runner itself.

This allows IFixedTimeRunner implementations to define a single virtual function

runForTime(t) instead of calling a virtual function every simulation tick.

67

typeclass BackendFrame {

// Must have a constructor that takes an allocator

BackendFrame(FrameAllocator<MemoryType> allocator);

}

typeclass Backend {

// Must define a Frame class

class Frame fits BackendFrame;

// Must have a constructor

Backend(std::vector<Frames>, FluidProperties, SimSnapshot);

float findMaxTimestep();

void tick(float timestep, int targetFrame);

LegacySimDump dumpStateAsLegacy();

SimSnapshot get_snapshot();

}

Figure 6.4.1: Backend typeclass

6.4.2 Backends

To allow the generic implementation described above, the Backend typeclass en-

sures all backends follow a consistent interface (Fig. 6.4.1). Five classes implement

this typeclass, matching those described in Section 5.2:

• NullSimulation

• CPUSimpleSimBackend

• CPUOptimizedSimBackend

• CPUOptimizedAdaptedSimBackend

• CudaBackendV1

CPU Backends

Most of the simulation code for CPU backends has been directly copied from the

original simulation[59][60]. Some templates and template specializations have been

added for the Adapted backend, but for the most part, the simulation is unchanged.

The backend classes simply wrap up this code to be compatible with the typeclass.

68

template<typename T>

using in_matrix =

const T* const __restrict__;

template<typename T>

using out_matrix =

T* const __restrict__;

(a) Matrix templates

__global__ void computationKernel(

CommonParams config,

in_matrix<float> inputs1,

in_matrix<int> inputs2,

out_matrix<float> output

);

(b) A kernel using the matrix templates

Figure 6.4.2: Example of CUDA matrix templates

CUDA Backend

The CUDA backend is where the bulk of new simulation work has been done. As

stated in the Design section, all simulation code has been ported to CUDA Kernels.

Each of these kernels takes a CommonParams struct as the first argument, containing

run-time constants such as the simulation grid size. To ensure const __restrict__

pointers are used wherever possible, all other kernel arguments must be either

an in_matrix<T> or an out_matrix<T>. These templates alias to simple point-

ers which properly use const and __restrict__ (Fig. 6.4.2). Using these enforces

that each kernel has clear, distinct inputs and outputs, and that the inputs are read

from fast global memory.

Themost intensive step in every implementation is the Poisson iterations, which

are individually trivial but intensive at scale. During development the profiler

showed large gaps between the individual kernel runs, equivalent to almost 50%

of the runtime. Each kernel was finishing quicker than the CPU could enqueue a

new one, so to solve this a CUDA Graph was employed. CUDA Graphs consist of

a prerecorded set of kernel invocations with constant arguments. A CUDA Graph

was recorded that consisted of 100 Poisson kernels, and this was launched instead

of the individual kernels. This resulted in a 2x speedup in the profiler (see Fig. 6.4.3),

but almost no speedup in practice. The CPU overhead for each enqueue may be lar-

ger in the profiler, which would explain why this behaviour is not present in the

final simulation.

69

(a) Before CUDA Graphs

(b) After CUDA Graphs

Figure 6.4.3: Profiler traces of the Poisson kernels before and after CUDA graphs

The timestep calculation is implementedwith two reductions, based on the second

kernel from [24]4. A constant factor N is chosen, and the values in the array are

reduced by a factor of N multiple times until only one is left. Two data buffers are

used to ping-pong the reductions - each iteration flips the input and output, so data

is reduced from A to B to A and so on.

Because there are two reductions, it is most efficient to perform the first one

asynchronously and enqueue both before waiting for them to finish. By default

copying reduction results back to the CPU is synchronous, which prevents this.

Allocating pinned memory, which cannot be paged to disk or moved around by the

OS, allows the copy to be done asynchronously.
4This isn’t the fastest kernel, but reductions aren’t frequent enough for it to matter.

70

(a) Synchronous Copy (b) Asynchronous Copy

Figure 6.4.4: Using asynchronous copies for greater efficiency

6.4.3 Usage in Other Layers

The visualization layer instantiates a VulkanTickedRunner with CudaBackendV1

to run a visualized simulation.

The command-line layer instantiates a FixedTimeRunner with any one of the

backends to run a headless simulation.

71

6.5 Visualization Layer

6.5.1 Multithreading

The worker thread is implemented with a SystemWorker class combined with a

generic threading system. An IWorkerThread virtual interface is defined, and then

implemented by the IWorkerThread_Impl<Worker> template for a specific Worker

class, similar to the Simulation Runners pattern.

To kick off the worker thread, a WorkerThreadController writes to a mutex-

protected set of input data. The ‘work index’ of this data is incremented to signal

it is new, and a condition variable is signalled to alert the worker thread and begin

processing. Work cannot be enqueued until the thread produces an output, which

is sent to the main thread in the same way as before - a mutex is taken to update

the output data with the new index, and the condition variable is signalled in case

the main thread is waiting for the worker to finish.

6.5.2 GPU Work Breakdown

Fig. 6.5.1 expands on the coarse GPU work breakdown from Section 5.3.3. Each

rectangle represents a piece of memory, and each arrow represents a transformation

from input to output via a compute shader, an image layout transfer, or a graphics

pipeline. Most memory is global rather than per-frame, as the system does not

run any visualization stages in parallel. Some per-frame buffers (highlighted in

bold) are used to allow race-free accesses at record-time. These buffers allow user

interaction, such as moving the particle emitters and setting the quantity ranges.

72

In
st

an
ce

d
R

en
de

re
r

M
in

/M
ax

 R
ed

uc
er

In
st

an
ce

d
Ve

ct
or

Pi
pe

lin
e

R
aw

Si
m

 D
at

a

La
yo

ut
Tr

an
sf

er

Ex
tra

ct
Ve

ct
or

 Q
ua

nt
ity

Ex
tra

ct
Sc

al
ar

 Q
ua

nt
ity

In
te

rp
ol

at
ed

 S
im

 D
at

a
Im

ag
e

La
yo

ut
 T

ra
ns

fe
r

Sc
al

ar
 Q

ua
nt

ity
Im

ag
e

Sc
al

ar
 Q

ua
nt

ity
Te

xt
ur

e

Sc
al

ar
 Q

ua
nt

ity
R

an
ge

La
yo

ut
 T

ra
ns

fe
r

Ve
ct

or
 Q

ua
nt

ity
Im

ag
e

Ve
ct

or
 Q

ua
nt

ity
Te

xt
ur

e

Ve
ct

or
 Q

ua
nt

ity
R

an
ge

In
te

rp
ol

at
ed

 S
im

 D
at

a
Te

xt
ur

e
In

st
an

ce
d

Pa
rti

cl
e

Pi
pe

lin
e

Po
st

-S
im

 P
ar

tic
le

 S
ta

te

Si
m

ul
at

e
Pa

rti
cl

es

Pr
e-

Si
m

 P
ar

tic
le

 S
ta

te

V
is

ua
liz

at
io

n
O

ut
pu

t

B
ac

kg
ro

un
d/

Sc
al

ar
Pi

pe
lin

e
Si

m
 D

at
a

In
te

rp
ol

at
io

n

Vi
z

C
om

pu
te

Vi
z

G
ra

ph
ic

s
Si

m

Ve
ct

or
 In

st
an

ce
s

G
en

er
at

e
Ve

ct
or

In
st

an
ce

s

Em
itt

er
 D

at
a

Em
it

Pa
rti

cl
es

O
ld

 P
ar

tic
le

 S
ta

te

Fi
gu

re
6.5

.1:
D
at
a
Tr
an
sf
or
m
at
io
n
D
ia
gr
am

sh
ow

in
g
th
e
da
ta

flo
w
fo
rt
he

Vi
su
al
iz
at
io
n

73

uniform readonly image2D resultImage;

// = (u, v, p, isfluid);

// Specify the exact pixel location

ivec2 pxIdx = ivec2(200, 450);

vec4 data = imageLoad(simDataImage, pxIdx);

(a) Directly

uniform sampler2D simDataSampler;

// = (u, v, p, isfluid);

// 50% across, 20% up the image

vec2 sampleAt = (0.5, 0.2);

vec2 velocity = texture(simDataSampler,

sampleAt).xy;↩→

(b) With a Sampler

Figure 6.5.2: Reading from an image directly vs. using a sampler

Image layout transfers allow the GPU to optimize access times for an image by
changing the format it’s stored in. Images are transferred to a “read-only optimial”
layout (listed as ‘Texture’ rather than ‘Image’ in Fig. 6.5.1) for efficient sampling at
arbitrary points, and kept in the “General” layout when accessed at 2D data arrays
(see Fig. 6.5.2 as a comparison).

Memory barriers (not shown in Fig. 6.5.1) are inserted between every compute
shader to ensure any required data written from a previous shader is visible to the
next shader[56]. These memory barriers are quite granular, as shown in Fig. 6.5.3.

// Make ShaderWrites from the ComputeShader stage available + visible to

// IndirectCommandReads in the DrawIndirect stage

fullMemoryBarrier(computeCmdBuffer,

vk::PipelineStageFlagBits::eComputeShader, vk::PipelineStageFlagBits::eDrawIndirect,

vk::AccessFlagBits::eShaderWrite, vk::AccessFlagBits::eIndirectCommandRead);

// Make TransferWrites from the Transfer stage available + visible to the

// ShaderReads in the ComputeShader phase.

fullMemoryBarrier(computeCmdBuffer,

vk::PipelineStageFlagBits::eTransfer, vk::PipelineStageFlagBits::eComputeShader,

vk::AccessFlagBits::eTransferWrite, vk::AccessFlagBits::eShaderRead);

Figure 6.5.3: Example showing the granularity of Memory Barriers

74

Post-Sim
Particle State

Pre-Sim
Particle State

Old
Particle State

Kickoff

Copy

Old
Particle
Draw
List

Num. to
emit

Num. to
simulate

Old
Inactive
Particle

List

Simulate
ParticlesNew

Simulate
Particle

List

New
Inactive
Particle

List

New
Particle
Draw
List

Emitter Data

Emit Particles
Old

Simulate
Particle

List

New
Particle

Positions

Old
Particle

Positions

Figure 6.5.4: Breakdown of particle-related GPU work

The particle system implementation in Fig. 6.5.1 is a simplified view for com-
pactness, Fig. 6.5.4 shows a full breakdown of this subsystem. This maintains three
growable/shrinkable lists, plus a buffer containing particle positions.

1. The Draw list, a list of particle indices to draw on screen

2. The Inactive list, a list of inactive particle indices

3. The Simulate list, a list of particle indices which take part in Simulation.

The previous Draw list is the authority on which particles currently exist, and is
used for the Kickoff shader to determine how many particles will be emitted/simu-
lated5. It is also copied into the Simulate particle list, which is grown by the Emit
Particles shader. The particles are then moved by the Simulate Particles shader as
shown in Section 2.3.5. These particles are added to the inactive list if out-of-bounds,
and the new Draw list otherwise.

6.5.3 Safe CPU/GPU Communication

Unlike CUDA, the Vulkan API does not provide any means of type-safety when
communicating between the CPU and GPU. If the GPU expects data in a specific
structure, it is the CPU’s job to create data that fits this structure. A naive solution
might be to keep a C++ structure definition and a GLSL structure definition, and
assume that one matches the other. This is error-prone as the structures are not
automatically kept in sync - if one changes, the other will not, and communication

5This isn’t known at record time, because the last frame may still be simulating the particles

75

will break down. This project’s approach is to create a GLSL file defining all in-
teroperable structures (global_structures.glsl), and then include it into a C++
header with some extra code to define GLSL types correctly. Both sides will now
use the same structure definitions, which are all defined in exactly one place. All
GLSL code uses the std430 memory layout rules, which closely matches the C++
memory layout, so the structures can be passed directly from the CPU to the GPU
safely.

6.5.4 Usage in Other Layers

The VulkanSimApp class is instantiated by the command-line layer to run the visu-
alization.

76

6.6 Command-Line Layer

The command-line layer is implemented with a set of “sub-app” classes, each imple-
mented by a separate virtual class satisfying an interface ISubApp. Virtual inher-
itance was chosen here because it is convenient and not in a performance-critical
area. Each ISubApp instance is used to create a CLI11 subcommand with some in-
put arguments, then CLI11 parses the command-line arguments and runs a callback
on the selected sub-app. These sub-apps then invoke other layers of the system to
complete their execution.

77

CHAPTER 7

Project Management

To ensure a smooth development process, all research and implementation was
planned ahead of time. This chapter details these plans including a complete sched-
ule, the development methodology used, the tools used, and the potential risks and
associated contingencies.

7.1 Software Development Methodology

Plan-driven solutions depend on a rigid specification being completed before de-
velopment[82], which did not fit with the more abstract goals of the visualization
portion. Additionally, some of the main advantages of plan-driven approaches only
apply when introducing new team members and handling large teams. Neither
scenario applies here, as only one person is undertaking active development. For
these reasons, an Agile approach was taken with a development cycle completing
every two weeks. The goals for each development cycle were documented using
Trello.

It was planned that the supervisor would be contacted every week with the cur-
rent status of the project and the progress made in the current cycle. These contacts
would either take place over e-mail if there were no pressing questions to ask, and
otherwise take place on Microsoft Teams. Unfortunately, this did not happen for
the first few weeks, as other work was vying for attention and preventing project
work from taking place. This was resolved in Week 5, and from then on there was

78

frequent email correspondence.

7.2 Project Timeline

The project was split into multiple tasks to schedule it effectively. These tasks are
scheduled on both a Gantt Chart in Fig. 7.2.1, and as a table in Table 7.2.1. The
timeline has been well followed, and this schedule has been left unchanged over
the course of the project.

No programming was scheduled over the Christmas break to allow time to be
spent on other assignments. The development of the visualization was scheduled
concurrently with optimizing the simulation, in case some strides in visualization
required extra optimizations to run in real-time. While not strictly required, some
optimizations were developed in this time to push performance further. A Code
Freeze was set for Week 22, to focus the researcher entirely on the presentation.

Figure 7.2.1: Project Schedule as a Gantt Chart

7.3 Tools

gcc 8 was used to compile the program. This version had stable support for the
C++14 and C++17 standards, allowing modern techniques to be used in the pro-
gram. CMake was used to handle building the program source files. Versions 3.8
and up support CUDA as a first-class language, which simplified the compilation
process.

Git was used for source control, synchronized to a private GitHub repository to
avoid data loss. The researcher used the CLion IDE to develop the program, which

79

Task Start Week End Week
Spec 1 3
CFD Research 3 12
Initial Simulation Porting 3 5
Basic Visualization 5 9
Progress Report 6 9
Visualization Research 12 18
Visualization Development 15 22
Simulation Optimization 15 22
Presentation 22 24
Final Report 9 32

Table 7.2.1: Project Schedule Tasks

simplified building the program and interacting with source control.
LATEX was used to create the various reports and non-program deliverables re-

quired by the project, which were hosted on Overleaf so they could be compiled on
Windows and Linux without installing a LATEX environment.

Trello was used to track bugs and upcoming features in each development cycle.
Google Drive was used to host other documents, e.g. scanned notes, that were
created during development.

7.4 Risk Management

When progressing through the project, there were risks that could impede progress
and even prevent the project from succeeding. Being aware of these risks allowed
them to be predicted ahead of time, avoided, or in the worst case mitigated once
they arrived. Risk can be calculated with the following equation, where Severity
and Likelihood are graded between 1 and 5.

𝑅𝑖𝑠𝑘 = 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ∗ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

Of these risks, Illness and Other Pressures were encountered during develop-
ment. Both were mitigated quickly and did not cause a large delay.

7.4.1 Misscheduling

It may have been possible that the features outlined in Chapter 4 were too great to
be implemented in the allotted time. In that case, the quality of work could have

80

to be reduced to meet deadlines, or the schedule would need to be changed. This is
especially relevant to the Visualization portion of the project, which was not fully
planned until the research was completed.

Risk = 2 * 2 = 4
Avoidance:

Previous projects were used as a reference to predict how long implementing
features will take, and inform the schedule. As new Visualization features were
discussed, the impact on scheduling they each have were considered.

Contingency:
The scope of the project could have been reduced to allow the report to be

completed in time. A “code freeze” was implemented close to the presentation dead-
line to ensure enough time is spent polishing the presentation and report.

7.4.2 Other Pressures

While the project schedule may have been well estimated based on the work re-
quired for the project, the amount of work required for other modules was larger
than expected. This manifested in Term 1, where the researcher took more modules
than usual. Additionally, the removal of in-person lectures due to COVID-19 led to
a lack of overall structure, which made organizing the other work more difficult.
This did not impact the schedule.

Risk = 2 * 1 = 2
Avoidance:

This could have been avoided by better balancing the modules between Term
1 and Term 2, but on the flip-side having fewer modules in Term 2 allowed for more
project work to be completed.

Contingency:
As before, the scope of the project could have been reduced to allow the

report to be completed in time. If module work took more time than expected by
week 20, the code freeze could have been pulled forwards to week 20 or 21 to spend
more time on the presentation.

7.4.3 Loss of Hardware Access

As noted in Section 4.3, a GPU is required for the project to be tested and developed.
Themain development environment was the researcher’s personal computer, which
has a suitable GPU.However, if this computerwere to break down or be stolen, there

81

was no readily available alternate environment. Under normal circumstances, the
Department of Computer Science labs would be used instead, as they also have
suitable GPUs, but the virus situation prevented this.

Risk = 5 * 1 = 5
Avoidance:

Not possible.
Contingency:

Student insurance could have been used to purchase a new GPU/computer
if it is stolen. Failing this, the DCS clusters could be used, but these would likely
have high contention from other students who need to use GPUs remotely.

7.4.4 Illness

It is always prudent to consider the possibility that the stakeholders may fall ill
and be unable to work on the project for some time. This was exacerbated by the
situation with COVID-19, making potential illnesses more dangerous than usual.

This risk manifested during Week 7 and delayed work on the project by three
days. However the bulk of the current work had been completed by that point, so
this module was not affected.

Risk = 4 * 2 = 8
Avoidance:

Not possible.
Contingency:

The schedule would need to be changed to account for the lack of time spent
working. Some requirements could be reduced or removed entirely.

82

CHAPTER 8

Testing & Success Measurement

In order to measure the degree of success a project achieves, testing must be per-
formed to verify the behaviour of the program is correct. This covers testing the
functionality of individual units of the program (unit testing), testing how those
units interact with each other (integration testing), and validating the behaviour of
the overall system against the functional and non-functional requirements[83]. This
section also defines the means of Success Measurement for some non-functional re-
quirements, which are then measured and evaluated in subsequent sections.

8.1 Unit Tests

The first layer of testing splits the program into ‘units’, that are independent of
each other, which are individually tested before combining them with other units
in the system. In some systems, it is practical to automate these tests, but this
was not pursued for this system as the behaviour is generally too complex to be
automatically verified.

Helpfully the program is already split into subcommands at the command-line
level (Section 5.4), which can all be tested individually. Because the file format is the
same as the original simulation, the original input file can be used to test comparis-
ons (compare), simple visualization (renderppm), and both simulations (fixedtime
and run). These commands all have equivalents in the original program, which
provides a basis for validating correctness. The makeinput subcommand, which

83

creates a new input file based on an image, can be tested by passing the resulting
input file to other known-functional subcommands and checking their behaviour.
This provides a coarse view of system functionality, but a finer level of detail can
be obtained by testing individual code components.

Unit-testing this particular codebase is difficult because many components are
dependent on other components - for example, the visualization components use
data gathered from the simulation output, which is impractical to extract for the
sake of testing individual components. It is easier to just test the complete visual-
ized simulation while assuming the simulation itself is correct. In other cases, unit
behaviour may be impractical to directly model or verify: the automated resource
management classes are difficult to test individually as the creation/destruction of
the resources they manage cannot be directly checked. However, there are some
areas where the codebase can be effectively unitized, the most prominent of which
is the simulation itself.

The simulation is split into stages, which are effectively independent code units.
Each unit depends on the output of the previous unit, so they cannot be tested
independently, but if the rest of the simulation units are known to be correct then
an individual unit can be tested. This technique was used during development to
ensure the CUDA simulation was consistent with the CPU version.

Overall, while unit tests are not always suitable for elements of the codebase,
they are helpful at a coarse level. The final set of unit tests are shown in Table 8.3.1.

8.2 Integration Testing

Once the program units have been individually tested, the Integration Tests in
Table 8.3.2 test that the units can interface with each other correctly. Again the
subcommands are treated as units, and testing is performed by passing the output
from one subcommand as the input to another. In this program only the makeinput
and fixedtime subcommands produce output, so their output is exhaustively tested
against the other commands. At the codebase level some previous unit tests can be
counted as integration tests: the headless simulation functions as an integration
test for the Memory and Simulation layers, and the visualized simulation tests the
integration between the Simulation and Visualization layers.

The C++ type system ensures that low-level connections between CPU code use
the correct types, making integration testing at this level redundant. Moving data
between the CPU and GPU is more complicated, but the elements put in place in

84

Section 6.5.3 with the Vulkan validation layers (Section 6.2) ensure that any integ-
ration errors are caught when simply running the program in Debug mode.

8.3 System Testing

This final layer of testing determines if the program upholds the functional and non-
functional requirements set out in Chapter 4. Some functional requirements such as
Req. F5.1 require in-depth checks of the visualization not suitable for other layers,
so are tested here. The System Tests specified in Table 8.3.3 cover all such tests,
and combined with the previous layers prove that the system meets the functional
requirements.

Many non-functional requirements can be tested directly: Req. NF2 is tested
with external programs valgrind and cuda-memcheck, Reqs. NF9 and NF10 are
tested by simply inspecting the program and source files, Req. NF11 is tested by
attempting to compile + run the program on DCS systems. A few require a large
amount of data collection or at least careful attention to detail. These tests are
specified in Table 8.3.4. All gathered data is specified in the next subsection, and
then the results are shown in Chapter 9.

8.3.1 Success Measurement

Some non-functional requirements require more in-depth testing. These tests are
planned here, and the results are shown in Chapter 9. The results are then evaluated
in Chapter 10 along with the rest of the test outcomes.

Tests T27 and T28 test thememory usage of the system. Themost important kind
of error they can detect are memory leaks, where memory is allocated without be-
ing released, leading to the program taking up memory it does not need anymore.
While it is important to avoid memory leaks in all cases, the most important vari-
ations are continuous memory leaks, where memory is continuously leaked over
and over, and large leaks of sizes larger than 100MB. Single small leaks are less con-
cerning, as they should not impact the rest of the system greatly. The programs used
to find these leaks may themselves be bad at recognizing allocation/freeing[84], and
lead to false positives, so care must be taken when evaluating their results.

Tests T30 and T31 evaluate the speed and accuracy of the CUDA-based simula-
tion backend vs. the adapted CPU backend. The accuracy ismeasured by comparing
the output of equivalent simulations on the original simulation input state. Other

85

states were tested, but any newly generated states with obstacles proved to be un-
stable and produce Not-a-Number outputs on both backends. The simulation speed
is tested on the original simulation input state, then behaviour at scale is tested
on custom generated states with no obstacles. Obstacle configuration does not af-
fect time-per-tick, so time-per-tick will be a representative value and equal for any
state of the same size. This would not be suitable for accuracy tests, as having no
obstacles greatly reduces the complexity and would likely produce disproportion-
ately high accuracy values.

As there is no visual component to the simulation tests, the program is run from
a terminal without running the X windowing system. Combined these tests should
give a complete picture of how the CUDA simulation’s speed and accuracy will
scale, and be enough to evaluate the requirements in context.

Test T33 evaluates the speed of individual visualization features vs. the simula-
tion. As the time taken to run a simulation tick can be variable based on the input,
these visualization speeds are compared to the time allotted to the target 60FPS,
i.e. 16.6ms. These visualization times are measured using the frame-time counter
in the GUI (Fig. 5.3.4), which measures the average time taken to present the last
32 frames. First, the time taken to render a frame with no visualization features is
taken. Each feature is then individually enabled, brought to the worst-case scen-
ario (using auto-range where applicable, and rendering the maximum amount of
instances where applicable), then the average frame-time is taken. To ensure the
results are not affected by external sources, the program is run in unlocked framer-
ate mode with no other programs running on the system. This is also the case for
the GPU utilization test (Test T29).

86

ID
D
es
cr
ip
tio

n
Ex

pe
ct
ed

O
ut
pu

t
Re

su
lt

T1
co

mp
ar

e:
id
en
tic

al
st
at
es

N
o
di
ffe

re
nc
e

N
o
di
ffe

re
nc
e

3

T2
co

mp
ar

e:
O
rig

in
al
in
pu

tt
o
or
ig
in
al
ta
rg
et

ou
tp
ut

So
m
e
di
ffe

re
nc
e

So
m
e
di
ffe

re
nc
e

3

T3
re

nd
er

pp
m:

re
nd

er
st
at
e
vo
rti
ci
ty

Eq
ua
lt
o
or
ig
in
al
pr
og

ra
m

Eq
ua
lt
o
or
ig
in
al
pr
og

ra
m

3

T4
ma

ke
in

pu
t:

ge
ne
ra
te

an
in
pu

tfi
le
fro

m
a
PN

G
Va

lid
sim

ul
at
io
n
st
at
e

Va
lid

sim
ul
at
io
n
st
at
e

3

T5
fi

xe
dt

im
e:

sim
ul
at
e
fro

m
an

in
pu

ts
ta
te

fo
r2

5
se
co
nd

s.
Va

lid
sim

ul
at
io
n
st
at
e

Va
lid

sim
ul
at
io
n
st
at
e

3

T6
ru

n:
vi
su
al
iz
e
a
sim

ul
at
io
n
fro

m
an

in
pu

ts
ta
te

fo
r2

5
se
co
nd

s.
Va

lid
sim

ul
at
io
n
st
at
e

Va
lid

sim
ul
at
io
n
st
at
e

3

Ta
bl
e
8.3

.1:
Un

it
Te
st
s

87

ID
In
te
gr
at
ed

M
od

ul
es

O
ut
pu

t
Ex

pe
ct
ed

Re
su
lt

T7
ma

ke
in

pu
t

−→
re

nd
er

pp
m

Va
lid

re
nd

er
im

ag
e
w
ith

th
e
sa
m
e
ob
st
ac
le
sq
ua
re
sa

st
he

in
iti
al
im

ag
e.

As
ex
pe
ct
ed

3

T8
ma

ke
in

pu
t

−→
co

mp
ar

e
co

mp
ar

e
ru
ns

su
cc
es
sf
ul
ly

As
ex
pe
ct
ed

3

T9
ma

ke
in

pu
t

−→
fi

xe
dt

im
e

Va
lid

sim
ul
at
io
n
ou

tp
ut

w
ith

th
es

am
eo

bs
ta
cl
es

qu
ar
es

as
th
ei
ni
tia

li
m
ag
e.

As
ex
pe
ct
ed

3

T1
0

ma
ke

in
pu

t
−→

ru
n

Vi
su
al
iz
at
io
n
of

a
sim

ul
at
io
n
w
ith

th
e
sa
m
e
ob
st
ac
le

sq
ua
re
s
as

th
e
in
iti
al

im
ag
e.

As
ex
pe
ct
ed

3

T1
1

fi
xe

dt
im

e
−→

re
nd

er
pp

m
Va

lid
re
nd

er
im

ag
e
w
ith

th
e
sa
m
e
ob
st
ac
le
sq
ua
re
sa

st
he

in
iti
al
st
at
e.

As
ex
pe
ct
ed

3

T1
2

fi
xe

dt
im

e
−→

co
mp

ar
e

co
mp

ar
e
ru
ns

su
cc
es
sf
ul
ly

As
ex
pe
ct
ed

3

T1
3

fi
xe

dt
im

e
−→

fi
xe

dt
im

e
Va

lid
sim

ul
at
io
n
ou

tp
ut

w
ith

th
e
sa
m
e
ob
st
ac
le
sq
ua
re
sa

st
he

in
iti
al
st
at
e.

As
ex
pe
ct
ed

3

T1
4

fi
xe

dt
im

e
−→

ru
n

Vi
su
al
iz
at
io
n
of

a
sim

ul
at
io
n
w
ith

th
e
sa
m
e
ob
st
ac
le

sq
ua
re
s
as

th
e
in
iti
al

st
at
e.

As
ex
pe
ct
ed

3

Ta
bl
e
8.3

.2:
In
te
gr
at
io
n
Te
st
s

88

ID
D
es
cr
ip
tio

n
Ex

pe
ct
ed

O
ut
pu

t
Re

su
lt

T1
5

fi
xe

dt
im

e:
GP

U
Si
m
ul
at
io
n

Si
m
ul
at
io
n
ba
ck
en
d
ca
n
be

se
tt
o
CU

DA
As

ex
pe
ct
ed

3

T1
6

ru
n:

GP
U
Si
m
ul
at
io
n

Si
m
ul
at
io
n
ba
ck
en
d
ca
n
be

se
tt
o
CU

DA
As

ex
pe
ct
ed

3

T1
7

ru
n:

Te
st
pa
us
in
g/
re
su
m
in
g
th
e
sim

ul
at
io
n

Si
m
ul
at
io
n
ca
n
pa
us
e/
re
su
m
ew

hi
le
th
ev

isu
al
iz
at
io
n

is
ru
nn

in
g

As
ex
pe
ct
ed

3

T1
8

ru
n:

Te
st
sa
vi
ng

th
e
sim

ul
at
io
n
st
at
e

Si
m
ul
at
io
n
st
at
e
ca
n
be

sa
ve
d
w
hi
le
vi
su
al
iz
in
g

Co
ul
dn

’t
sa
ve

st
at
ew

hi
le
ru
n-

ni
ng

7

T1
9

ru
n:

Te
st
m
ov
in
g
th
e
pa
rti
cl
e
em

itt
er
s

Pa
rti
cl
e
em

itt
er
sc

an
be

m
ov
ed

w
hi
le
th
e
sim

ul
at
io
n

is
ru
nn

in
g

As
ex
pe
ct
ed

3

T2
0

ru
n:

Ca
n
ru
n
w
ith

a
fix

ed
fra

m
er
at
e

Fr
am

er
at
e
ca
n
be

fix
ed

at
so
m
e
va
lu
e

Fr
am

er
at
ew

as
fix

ed
at
12
0F
PS

an
d
di
d
no

tc
ha
ng

e
3

T2
1

ru
n:

Ca
n
ru
n
w
ith

an
un

lo
ck
ed

fra
m
er
at
e

Fr
am

er
at
e
ca
n
be

un
lo
ck
ed

Fr
am

er
at
ew

as
no

tl
oc
ke
d
an
d

va
rie

d
be
tw

ee
n
75
0-
80
0F
PS

3

T2
2

ru
n:

A
ll
Vi
zl
ay
er
sw

or
k
as

ex
pe
ct
ed
.

A
ll
la
ye
rc

om
bi
na
tio

ns
ca
n
be

us
ed
,a

ll
la
ye
rs

fu
nc
-

tio
n
as

de
sc
rib

ed
in

Ch
ap
te
r4

.
As

ex
pe
ct
ed

3

T2
3

ru
n:

Te
st
au
to
-r
an
ge

fu
nc
tio

na
lit
y

Au
to
-r
an
ge
d
Sc
al
ar

an
d
Ve

ct
or

qu
an
tit
ie
sd

isp
la
y
al
l

va
lu
es

in
th
e
sim

bo
un

da
ry
.

As
ex
pe
ct
ed

3

T2
4

ru
n:

Te
st
ch
an
gi
ng

co
lo
rs

A
ll
co
lo
rs

us
ed

in
th
e
sim

ul
at
io
n
sh
ou

ld
be

m
od

ifi
-

ab
le

As
ex
pe
ct
ed

3

T2
5

ru
n:

Ch
ec
k
Vu

lk
an

va
lid

at
io
n

N
o
Vu

lk
an

va
lid

at
io
n
er
ro
rs

in
D
eb
ug

m
od

e
As

ex
pe
ct
ed

3

Ta
bl
e
8.3

.3:
Sy

st
em

Te
st
s(
Fu

nc
tio

na
l)

89

ID
D
es
cr
ip
tio

n
Ex

pe
ct
ed

O
ut
pu

t
Re

su
lt

T2
6

ru
n:

La
rg
e
Si
m
ul
at
io
n

Si
m
ul
at
io
n
ca
n
ru
n
on

a
40
96
x4
09
6
in
pu

t.
As

ex
pe
ct
ed

3

T2
7

ru
n:

N
o
CP

U
m
em

or
y
le
ak
s

Vi
su
al
iz
at
io
n
ru
n
un

de
rv

al
gr

in
d
sh
ou

ld
ha
ve

no
pr
og

ra
m
-

co
nt
ro
lle
d
m
em

or
y
le
ak
s.

Se
e
Se
ct
io
ns

9.1
.4
an
d
9.2

.3
3

T2
8

ru
n:

N
o
CU

DA
m
em

or
y
le
ak
s

Si
m
ul
at
io
n

ru
n

un
de
r

cu
da

-m
em

ch
ec

k
sh
ou

ld
ha
ve

no
pr
og

ra
m
-c
on

tro
lle
d
m
em

or
y
le
ak
s.

Se
e
Se
ct
io
ns

9.1
.4
an
d
9.2

.3
3

T2
9

ru
n:

H
ig
h
GP

U
Ut
ili
za
tio

n
N
sig

ht
Sy

st
em

s
pr
ofi

le
r
ou

tp
ut

sh
ou

ld
sh
ow

m
ax
im

um
ac
hi
ev
ab
le
GP

U
ut
ili
za
tio

na
Se
e
Se
ct
io
ns

9.1
.3
an
d
9.2

.2
3

T3
0

fi
xe

dt
im

e:
Si
m
ul
at
io
n

is
fa
st
er

th
an

or
ig
in
al

sim
ul
a-

tio
n

CU
DA

sim
ul
at
io
n
sh
ou

ld
ru
n
2x

fa
st
er

th
an

th
eo

rig
in
al
sim

-
ul
at
io
n
on

th
e
or
ig
in
al
in
pu

t.
Se
e
Se
ct
io
n
9.1

.1
3

T3
1

fi
xe

dt
im

e:
Si
m
ul
at
io
n

pr
o-

du
ce
s
sim

ila
r
re
su
lts

to
or
i-

gi
na
ls
im

ul
at
io
n

CU
DA

sim
ul
at
io
n
so
lv
er

re
sid

ua
ls
ho

ul
d
be

w
ith

in
5%

of
ad
-

ap
te
d
CP

U
ba
ck
en
d.

Se
e
Se
ct
io
n
9.1

.2
3

T3
2

ru
n:

Ca
n
ru
n
at

hi
gh

fra
m
er
-

at
e

Vi
su
al
iz
at
io
n
ca
n
ru
n
at

>3
0F
PS

in
so
m
e
ca
se

Si
m
ul
at
in
g
th
e
or
ig
in
al

in
pu

t
at

N
=1

00
ru
ns

at
8̃0
0F
PS

.
3

T3
3

ru
n:

Vi
su
al
iz
at
io
n

fe
at
ur
es

ar
e
fa
st
er

th
an

sim
ul
at
io
n

Se
e
Se
ct
io
n
8.3

.1
Se
e
Se
ct
io
n
9.2

.1
3

T3
4

Tr
y
to

co
m
pi
le

on
D
CS

sy
s-

te
m
s

Sh
ou

ld
be

ab
le

to
co
m
pi
le

an
d
ru
n
th
e
sim

ul
at
io
n
on

el
e-

m
en
ts
of

th
e
D
CS

sy
st
em

.

Su
cc
es
sf
ul
ly

co
m
pi
le
d

no
n-

CU
DA

sim
on

D
CS

.
3

Ta
bl
e
8.3

.4:
Sy

st
em

Te
st
s(
N
on

-F
un

ct
io
na
l)

a 1
00
%
m
ay

no
tb

e
po

ss
ib
le
du

e
to

ot
he
rp

ro
gr
am

su
sin

g
th
e
GP

U

90

CHAPTER 9

Results

Some non-functional requirements are based on comparisons to the original pro-
gram or on tests that require more detailed analysis. This section shows the data
used to evaluate these more complex requirements. The speed of the simulation
is compared to the original, and the performance scaling with simulation grid size
is measured and justified. Simulation accuracy vs. the original is evaluated. GPU
Utilization of both the simulation and visualization is measured, and shown to be
as high as possible given the design. Multiple programs are used to detect memory
leaks, and show the program is leak-free. These results are then used in the Evalu-
ation (Chapter 10).

91

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

2,000

4,000

Time (s)

Ti
ck
sE

xe
cu
te
d

Ticks Executed over Time

CPU
CUDA

Figure 9.1.1: Ticks executed over time

9.1 Simulation

This section investigates four properties of the headless simulation: speed, accur-
acy, GPU utilization, and memory leaks. Some of these properties affect the visu-
alization, as it runs a simulation internally. This is discussed in Section 9.2.

9.1.1 Speed

Each tick of a simulation performs the same amount of work, so it was hypothesized
that the number of ticks per second would be a suitable metric for measuring sim-
ulation speed. To verify this, the original simulation input was simulated with the
CUDA and CPU backends for 10, 25, and 50 simulation-seconds with𝑁𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = 100.
As shown in Fig. 9.1.1, elapsed real-time is directly proportional to the number of
ticks executed with R-values of 𝑅2

𝐶𝑃𝑈 = 0.9999 and 𝑅2
𝐶𝑈𝐷𝐴 = 0.9996. This proves

that ticks-per-second can be used to accurately compare CUDA/CPU performance.
The ticks-per-second for CPU and CUDA are shown in Fig. 9.1.2, for 𝑁𝑃𝑜𝑖𝑠𝑠𝑜𝑛

values of 100, 200, 300, 1000. As expected the ticks-per-second decreases as more
iterations are added, and CUDA is consistently faster than the CPU. When nor-
malized relative to the CPU speed (Fig. 9.1.3), CUDA is shown to consistently have
~2.6x the ticks-per-second of the CPU, i.e. CUDA is consistently 2.6x faster than
the CPU. The Poisson stage is likely less sped up than the others, as the speedup
for 𝑁𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = 1000 (where the Poisson stage dominates) is less than that for lower
𝑁𝑃𝑜𝑖𝑠𝑠𝑜𝑛 values. When running at 𝑁𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = 300 the speed is close to the CPU speed
for 𝑁𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = 100, so the original goal of “using the speedup to increase simulation
accuracy” can be met.

92

100 200 300 1000
0

500

1,000

1,500

2,000

Poisson Iterations N

Ti
ck

Ra
te

(1
/s
)

CPU
CUDA

Figure 9.1.2: Simulation Tick Speed vs. Poisson Iterations

100 200 300 1000
0

0.5

1

1.5

2

2.5

3

Poisson Iterations N

Ti
ck

Ra
te

(1
/s
)

CPU
CUDA

Figure 9.1.3: Simulation Tick Speed relative to CPU

93

0.4 0.8 1.2 1.6 2 4 8 16 32 64 128
0

5

10

15

20

Poisson Data Size (MB)

Th
ro
ug

hp
ut

(G
op

/s
)

Throughput vs. Poisson Data Size (N = 1000)

CPU
CUDA

Figure 9.1.4: Simulation Throughput for CPU and CUDA vs Poisson cache size

0.4 0.8 1.2 1.6 2 4 8 16 32 64 128
0

5

10

15

20

Stage 1 Stage 2 Stage 3

Poisson Data Size (MB)

Th
ro
ug

hp
ut

(G
op

/s
)

Throughput vs. Poisson Data Size (N = 1000)

CUDA

Figure 9.1.5: Simulation Throughput for CUDA, split into stages

Scaling

To determine how the implementations scale with grid resolution, a simple simula-
tion with no obstacle squares was performed for resolutions between 260 x 130 and
4096 x 2048. As the amount of work per simulation tick varies with grid size, each
tick is multiplied by the number of grid cells and number of Poisson iterations to de-
termine the number of operations (ops) executed, and giga-operations-per-second
(Gop/s) is used to measure performance. The increasing size is measured in the total
amount of memory (in MB) required for a full Poisson red/black iteration, equal to
three full-size matrices: the pressure matrix, the 𝛽 matrix, and the 𝑟ℎ𝑠 matrix. Each
simulation simulated 25 s of simulation time with 𝑁𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = 1000. Fig. 9.1.4 shows
Gop/s for CUDA and CPU against the memory required in MB.

94

Grid Size Physical Size (m) Poisson Data Size (MB) Total Cells CUDAThreads per
Colour Stage

260x130 20.0 x 10.0 0.39 33,800 16,900
380x190 29.2 x 14.6 0.83 72,200 36,100
460x230 35.4 x 17.7 1.21 105,800 52,900
520x260 40.0 x 20.0 1.55 135,200 67,600
600x300 46.2 x 23.1 2.06 180,000 90,000
640x320 49.2 x 24.6 2.34 204,800 102,400
700x350 53.8 x 26.9 2.80 245,000 122,500
740x370 56.9 x 28.5 3.13 273,800 136,900
840x420 64.6 x 32.3 4.04 352,800 176,400
1180x590 90.8 x 45.4 7.97 696,200 348,100
1680x840 129.2 x 64.6 16.15 1,411,200 705,600
2360x1180 181.5 x 90.8 31.87 2,784,800 1,392,400
4096x2048 315.0 x 157.5 96.00 8,388,608 4,194,304

Table 9.1.1: Throughput Measurement Points

Initially, the biggest surprise in Fig. 9.1.4 was the CPU performing better than
CUDA between 4-16MB. Other interesting points were the linear increase in CUDA
throughput between 0.4-1.2MB, and the performance plateau from 4MB onwards
(CUDA) and 32MB onwards (CPU). These are due to multiple factors, which are
best explained by separating the CUDA graph into stages (Fig. 9.1.5).

The first stage shows Gop/s increasing almost linearly before plateauing at 1.2-
1.5MB. This is due to the GPU’s parallelization not being fully utilized. This data
wasmeasured on aGTX 1080, which has 2560 CUDA cores separated into 20 Stream-
ing Multiprocessors (SMs) of 128 cores each[37]. Each SM can execute 2048 threads
at once[49], thus the GPU can execute at most 40,960 threads in parallel. The first
data point uses a 260 x 130 grid with only 33,800 cells, thus 16,900 threads per Pois-
son colour stage1, so the GPU isn’t saturated and isn’t producing as many outputs
as possible per second. This is also the case for the second data point, with 36,100
threads per colour stage. Beyond this point, the GPU is saturated and the through-
put plateaus at 2.6x the CPU value.

The throughput decreases after 2MB, which is the size of the GTX 1080 L2
cache[37]. As the size increases beyond this point the chances of a memory read
being present in the cache decreases, so requests to main memory are made more
frequently. Main memory is much slower than L2 cache so the throughput de-
creases until the data is 2x the cache size (4MB), at which point all accesses are to

1The red and black stages only write to the 1/2 of the grid corresponding to their colour.

95

main memory and the throughput plateaus at 10Gop/s. This behaviour can also be
seen with the CPU, an AMD Ryzen 7 1800X with 16MB of L3 cache, which peaks
at 16MB then drops at 32MB onwards. Initially when the GPU performance drops
it falls below the CPU performance, but once the CPU performance falls the GPU
ends up being 6x faster.

Caching is vital to performance, and this program is no exception. Adapting the
implementation to better utilize cache is crucial to improving simulation speed at
scale, and would be excellent to investigate this as future work.

9.1.2 Accuracy

Initially, accuracywasmeasured by comparing theMean Square Error (MSE) between
CPU and CUDA outputs after equivalent simulations (see Table 9.1.2). Ideally, the
CUDA and CPU results would be similar, and the MSE would be low (perhaps
around 10−14, as expected in Section 5.4.3.) Instead, the results are quite differ-
ent - the velocity is quite similar after 10 s, but that delta increases to 10−6 as the
simulation progresses. Pressure is even worse, starting at 10−8 and going as far
as a mean square error of 100 = 1. In both cases, the divergence between CPU
and CUDA increases as more iterations are performed (see Figs. 9.1.6a and 9.1.6b).
However, this isn’t the whole story. Measuring the difference between the CPU
and CUDA doesn’t show which one is more accurate.

Velocity Pressure
Time (s) 100 200 300 1000 100 200 300 1000

10 −14.12 −14.01 −13.46 −13.02 −8.14 −7.71 −7.01 −5.18
25 −5.93 −5.93 −5.93 −5.93 −5.36 −4.14 −3.33 −0.91
50 −6.41 −6.34 −6.33 −6.29 −5.02 −4.21 −3.11 −0.13

Table 9.1.2: Log of Mean Square Error between CPU and CUDA results
(Numbers closer to 0 are worse)

The true measure of accuracy for a differential equation solver is the precision of

Poisson Iterations Residual (CUDA) Residual (CPU) Delta
100 6.34 × 10−3 6.32 × 10−3 1.88 × 10−5 (+0%)
200 1.49 × 10−3 1.48 × 10−3 1.73 × 10−5 (+1%)
300 6.49 × 10−4 6.37 × 10−4 1.16 × 10−5 (+2%)
1000 5.54 × 10−5 5.28 × 10−5 2.54 × 10−6 (+5%)

Table 9.1.3: Residual values after 50 s of simulation on original simulation input

96

100 200 300 1,000

105

100

10−5

10−10

10−15

Poisson Iterations per Tick

M
SE

(lo
g
sc
al
e)

Velocity MSE

(a) Velocity MSE

100 200 300 1,000

Poisson Iterations per Tick

Pressure MSE

10 s
25 s
50 s

(b) Pressure MSE

Figure 9.1.6: Initial MSE Results

1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

0

10

20

Poisson Iterations

Pr
es
su
re

Va
lu
e
Ra

ng
e

Poisson Pressure Inflation

CPU
CUDA

Figure 9.1.7: Inflation of pressure values with Poisson iterations

the solution - how close the values come to fulfilling the constraints of the equation.
The original simulation calculated this residual value as part of the Poisson loop, but
this was removed for optimization purposes. Table 9.1.3 presents the residual values
as calculated after the simulations completed, showing that the difference between
CPU and CUDA in terms of the solver accuracy is very small. CUDA is slightly less
precise, but is at worst within just 5% of the CPU residual. This is likely forgivable
for the sake of real-time visualization, but could still be improved in the future.

The large increase in Pressure MSE is explained by Fig. 9.1.7. The actual pressure
values increase as more Poisson iterations are performed, for both CPU and CUDA.
CUDA’s values inflate slightly more slowly, giving each grid cell a high square error,
resulting in a large MSE. When the MSE is calculated after subtracting the mean

97

100 200 300 1,000

105

100

10−5

10−10

10−15

Poisson Iterations per Tick

M
SE

(lo
g
sc
al
e)

Pressure (Relative) MSE

10 s
25 s
50 s

Figure 9.1.8: MSE for Pressure when adjusted to use relative values

from both datasets, i.e. comparing the relative values, the results are closer to the
velocity MSE (Fig. 9.1.8). The pressure is only used internally as a relative value
so in theory this inflation is fine, but in practice if it increases too much it could
reach the limits of IEEE-754 floating point[38] and cause accuracy/precision loss in
the solver. The original book mentioned that “nonphysical pressure values” may
be the result of noncontinuous starting velocities[8], and mentioned a method for
resolving this (see Section 2.2.2). This may prevent inflation, but it doesn’t explain
the deviation between the CPU and CUDA.

The CUDA and CPU compilers are configured to handle floating-point numbers
slightly differently. nvcc compiles with the --fmad option turned on by default[50]
which “enables the contraction of floating-point multiplies and adds/subtracts into
floating-point multiply-add operations”. This optimization performs a multiply and
an addition at the same time, without a rounding step in between, resulting in a
slightly more accurate result[51]. It is disabled for the CPU compiler, to keep the
results from the other CPU backends consistent with the original simulation. While
the change is subtle it’s present in all CUDA kernels, and when applied thousands
of times may have a significant effect, leading to the deviation. In the future, this
could be verified by compiling the CPU simulation with this option enabled.

98

10 µs 10 µs

Figure 9.1.9: Simulation Profile, highlighting the GPU bubbles

9.1.3 GPU Utilization

During the Poisson iterations the GPU utilization is 100% thanks to the CUDA
Graph optimization. At the tick boundaries, a bubble is unavoidable (see Fig. 9.1.9)
where the CPU has to wait for the GPU reductions to finish before calculating the
timestep for the next tick and invoking the next kernels. This bubble is approxim-
ately 10 µs long, combinedwith another 10 µs bubble between the Tentative Velocity
stage finishing and the Poisson stage beginning. Each tick at 100 iterations for this
simulation took 700 µs, so this gap accounts for 2.8% of the runtime. As the simu-
lation gets larger, or the iteration count increases, this gap should remain constant
and become even less significant. Computing the timestep entirely on the GPU,
instead of sending data back and forth from the CPU, could allow the kernels to be
enqueued earlier and avoid the GPU bubble.

9.1.4 Memory Leaks

The program is designed to allocate all memory up-front, instead of allocating dur-
ing a simulation. This makes memory leaks unlikely, but not impossible. valgrind
was used to test if the program leaked anymemory using the CPU backend. Support
for CUDA-based memory in valgrind seemed to be lacking, so it was run with sup-
pressions enabled that hid CUDA-related false positives. It did not find any leaks in
the project code, but did find a potential memory leak in the OpenMP implementa-
tion2. cuda-memcheck was then used to find any leaked CUDA memory, and found
nothing.

2This may also be a false positive similar to those from CUDA.

99

Feature Worst-Case
Quantity-by-Scalar Auto-range enabled
Quantity-by-Vector Auto-range enabled, grid spacing set to display maximum number of

vectors = 10,000
Particle System Particle simulation enabled, emitting maximum amount of particles

per frame = 16, simulating and rendering maximum amount of
particles = 100,000

Table 9.2.1: Testing Scenarios for Visualization Feature Speed.

Base Frame with Sim Scalar Quantity Vector Field Particles
Mean Time (ms) 0.30 1.18 0.39 0.46 0.42
4 from base (ms) - +0.88 +0.09 +0.16 +0.12

Table 9.2.2: Visualization feature execution times

9.2 Visualization

This section investigates three properties of the real-time visualization: speed, GPU
utilization, and memory leaks. While these properties do overlap with the simula-
tion, this section focuses only on the properties of the visualization itself.

9.2.1 Speed

The speed of each feature was measured by enabling only that feature, moving
to the worst-case for that feature such as enabling auto-range and maximizing on-
screen instances (Table 9.2.1), and then reading off the time-to-render from the GUI.
The rendered simulation state was the 660 x 120 original simulation input, which is
rendered internally at 2x resolution in both directions i.e. 1320 x 240 then compos-
ited with the GUI onto a 1600 x 900 window.

The individual features are all faster than the simulation, even when combined,
and are significantly shorter than the 16.6ms required for a 60FPS visualization.
Even at scale, the visualization features should not have a significant impact on the
visualization speed.

9.2.2 GPU Utilization

Just like the Simulation, the GPU utilization is 100% where possible. In theory, the
visualization work would hide the extra latency from waiting for the reduction to
finish, but in practice the visualization work itself waits for around 70 µs after the
semaphore is raised before starting (Fig. 9.2.1). The next CUDA tick, which has been

100

70 µs 140 µs

Figure 9.2.1: Visualization Profile, highlighting the GPU bubbles

enqueued well in advance by the CPU, then takes 140 µs to start after the previous
visualization rendering has finished. In both cases there was no other GPU work
executing for this program, nor any other element of this program that could have
delayed it, thus it must be due to outside factors e.g. the OS compositing system
using the GPU to render the desktop.

9.2.3 Memory Leaks

Testing the visualization for memory leaks proved more difficult than for the sim-
ulation. Running valgrind with suppressions enabled found no errors in this pro-
gram, but found many potential errors (or more likely false positives) in the SDL2
windowing library and the underlying X windowing system. cuda-memcheck pro-
duced a host of “Invalid read” errors, which seemed to originate fromCUDA/Vulkan
sharedmemory. The documentation stated it could not handle DirectX interoperab-
ility[52], but said nothing about Vulkan. It suggested using the compute-sanitizer
tool in other situations, which explicitly does not support Vulkan interoperabil-
ity[53], and that tool produced exactly the same errors. Given that the errors were
identical, it is very likely that both programs do not support Vulkan and should not
be trusted.

As a last resort, the Memory Usage statistic from the Nvidia NSight Systems
profiler was consulted. This showed that the CUDAmemory usage stayed constant,
but had no option to show memory allocated in Vulkan. Vulkan memory should
all be explicitly allocated at the start with smart resource manager classes, so it is
incredibly unlikely that any Vulkan memory is leaked, but currently there are no
tools able to verify this.

101

CHAPTER 10

Evaluation

This chapter evaluates the project’s final outcomes against the requirements laid
out in Chapter 4, providing an objective measurement of success. This is then sup-
plemented with a justification for the few missed requirements, all of which were
non-essential. The project management is then appraised.

10.1 Requirements Evaluation

The Requirements in Chapter 4 evolved as the simulation and visualization areas
were researched throughout the project. The program was designed with these
requirements in mind, and by checking if the program meets these requirements
the overall success of the project can be determined. Each requirement has been
tested by one or more of the tests defined in Chapter 8. Table 10.1.1 and Table 10.1.2
show the tests for each requirement and the combined status of these tests. The full
description of each requirement can be found in Chapter 4 and the descriptions of
the tests can be found in Chapter 8.

All 24 of the must-have requirements have been met, as have 8 out of the 11
should-have requirements. This is an overwhelming success, showing the core
functionality of the program is as expected. The 3 failed should-have requirements,
shown in Table 10.1.3, are relatively minor. Furthermore, each omission can be
justified.

102

ID Priority Tests Status
F1 must Implicit in program behaviour 3

F2 must T9, T10, T13, T14 3

F3 must T4 3

F4 must T5 3

F4.1 must T5 3

F5 must T6 3

F5.1 must T17 3

F5.2 should T18 7

F5.3 should T19 3

F5.4 should T20 3

F5.5 should T21 3

F5.6 must T20, T21 3

F6 must T15, T16 3

F7 must T1, T2 3

F7.1 should T1, T2 7

F8 must T22 3

F8.1 must T22 3

F8.2 must T22 3

F8.3 must T22 3

F8.4 must T22 3

F9 should T23 3

F10 should T24 3

F11 should T19 3

Table 10.1.1: Evaluation of Functional Requirements

ID Priority Tests Status
NF1 must T26 3

NF2 must T25, T27, T28, T29 3

NF3 must T31 3

NF4 should T30 3

NF5 must T32 3

NF6 should T33 3

NF7 should By Inspection 3

NF8 should T22 7

NF9 must By Inspection 3

NF10 should By Inspection 3

NF11 should T34 3

Table 10.1.2: Evaluation of Non-Functional Requirements

103

ID Priority Tests Status
F5.2 should T18 7

F7.1 should T1, T2 7

NF8 should T22 7

Table 10.1.3: Failed Requirements

Satisfying Req. F5.2, which required saving the simulation state during a visual-
ization, would have delayed the work on the visualization layers. As the visualiz-
ation is a significant portion of the project, and this feature would not have had a
relevant use-case during development, it was cut.

Req. F7.1 would require the compare tool to output a single SIMILAR/NOT SIM-
ILAR value rather than the more detailed metrics it now uses. Using a single nu-
meric value to convey this information would be near-impossible and result in a
significant loss of nuance, even more so if only binary options are available, so
would be pointless if shown alongside the more detailed metrics.

Req. NF8 was planned in the Progress Report, specifically citing BOID-like be-
haviour[39] as a potential means for reducing clumping. This would have greatly
increased the complexity of the particle system. Particles would need to identify
other nearby particles, which would likely require the positions to be sorted for
efficient access, and while this has been implemented on the GPU before[40][85] it
wasn’t possible to implement it before the code freeze.

10.2 Project Management

ProjectManagement has been incredibly successful, allowing an extremely complex
combined simulation and visualization to be efficiently completed on schedule. The
schedule itself allotted enough time for both research and implementation, and gave
enough leeway that the manifested risks did not prevent success. Using third-party
libraries for GUI management and command-line parsing allowed developer time
to be spent on important problems, instead of hooking together customized imple-
mentations. The Code Freeze implemented in Week 22 ensured enough time was
devoted to developing the presentation, which was crucial to success. As shown
by the many successful requirements it did not make the program fall short in any
way.

104

CHAPTER 11

Conclusion

This project aimed to create a GPU fluid simulation and real-time in-situ visualiza-
tion program, which required substantial research on fluid simulations, optimizing
large parallel computation on GPUs, and various visualization methods. The imple-
mentation required knowledge of C++, Vulkan, andCUDA; an in-depth understand-
ing of the complex underlying details of each, including their handling of memory;
and an effective high-level design. On top of this, the project was well scheduled,
allowing all core features to be implemented while allowing enough time for the
associated reports and presentation to be developed. Rigorous testing was under-
taken to ensure the program met the requirements, and the program passed with
flying colours. The behaviour of the simulation at scale was measured, producing
interesting findings and paving the way for future work in the area. Overall, the
project has been a success.

11.1 Summary

The full in-situ visualization is a very large program, with over 8.5 thousand lines
of custom code, which is impressive in its own right. It also brings novelty as an
accurate simulation/visualization that runs in real-time, rather than rendering a
visualization to disk for later viewing or rendering a static simulation state. It uses
the high-performance Vulkan rendering API, which other toolkits have been slow

105

to adopt1. Along with the up-and-coming Datoviz library[86], it is a step forwards
to bring Vulkan-level performance to the wider visualization community.

Porting the simulation to CUDA is not a new work, but it was still a significant
undertaking for the researcher and required extra thought to adapt to a tightly-
coupled visualization. Gathering results at different scales demonstrated the up-
per limit of GPU throughput, and empirically showed the importance of cache-
friendliness in GPU algorithms. It is certainly a good starting point for future work
in this space.

11.2 Reflection

Completing the project successfully relied on using good development practices.
During Term 2 extensive notes were takenwhile solving bugs and designing the rest
of the program, ensuring all notable choices could be documented in this report and
the presentation. Using Git branches to develop multiple features separately pre-
vented confusion when working with the code, and maintaining a ‘master’ branch
ensured that an up-to-date bug-free version of the program was always available.
This project also tied in the researcher’s prior knowledge from other areas, such as
memory models, caches, and functional programming.

While the project as a whole was successful, some small elements could have
been better executed. Third-party libraries were used in places, most notably for the
GUI, but were not used in the low-level memorymanagement or other Vulkan code.
For Vulkan specifically, using the VulkanMemory Allocator library[87] would have
allowed for easier memory allocation. Other Vulkan wrappers and tools, such as
the codebase developed by Sascha Willems for their Vulkan samples[88], may have
made certain actions less cumbersome.

A common pattern encountered when implementing new code was to design
for a larger system than necessary. For example, when implementing the worker
thread, a generic worker thread setup was created in case another worker thread
was needed later. Building a single worker thread would have been simpler and
quicker. In general, a lack of initial investigation on the coding side led to slight
overcomplication. However, this was very minor, as most of the code developed
is still used in the program. Some elements, like the simulation runners, even be-
nefited from being designed as generic code first!

1VTK has a Vulkan branch at https://gitlab.kitware.com/ken-martin/vtk/-/tree/vulkan/Rendering/
Vulkan, which hasn’t been updated since August 2020.

106

https://gitlab.kitware.com/ken-martin/vtk/-/tree/vulkan/Rendering/Vulkan
https://gitlab.kitware.com/ken-martin/vtk/-/tree/vulkan/Rendering/Vulkan

11.3 Future Work

On the simulation side, clear areas for improvement are the cache usage/perform-
ance at scale, and the pressure inflation problem. Both would require further in-
vestigation, but have some easy starting points. Other parallel GPU algorithms
take advantage of shared memory and locality to improve performance, which the
algorithm could be adapted to support. Investigating the non-physical pressure val-
ues fix from [8] (see Section 2.2.2) could be the key to removing pressure inflation.
Re-implementing the Poisson residual check may reduce the number of required
Poisson iterations per tick. Different Poisson solvers could also be added to the
simulation, which may be more cache-friendly.

Visualization also has many potential improvements. A more advanced particle
simulation as mentioned in Section 10.1 could be implemented, which would re-
quire more research into game industry particle simulations. For better accessibil-
ity, the colours initially used in the visualization could also be adapted to be more
colourblind friendly.

Truly parallel simulation/visualization has not been achieved, mostly due to
the limitations of the researcher’s hardware (Section 5.3.2). As established in Sec-
tion 9.2.1 the visualization is already very fast, but for larger & more complicated
visualizations this may become a significant portion of runtime. Using multiple
GPUs, perhaps on separate systems, to implement a loosely-coupled version of this
visualization could allow for a truly parallel visualization and investigation of the
benefits vs. tight coupling.

All in all, this project is in a very open research area and has great potential
to expand. As massively parallel systems become more powerful and accessible,
running programs like this on larger datasets will become more and more feasible,
especially in industrial applications. It will be very interesting to see what comes
next.

107

CHAPTER 12

Bibliography

[1] Antony Jameson, Luigi Martinelli and J. Vassberg. ‘Using Computational Fluid Dynamics
For Aerodynamics- A Critical Assessment’. In: Proceedings of the 23RD International Congress

of Aeronautical Sciences. September 2002.

[2] Andrew L. Sullivan. ‘Wildland surface fire spread modelling, 1990 - 2007. 1: Physical and
quasi-physical models’. In: International Journal of Wildland Fire 18.4 (2009), p. 349. issn:
1049-8001. doi: 10.1071/wf06143.

[3] ‘Fluid Dynamics on the Big Screen’. In: ANSYS Advantage II.2 (2008), pp. 52–53. uRl:
https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/aa-

v2-i2-fluid-dynamics-on-big-screen.pdf.

[4] James Kress. ‘In Situ Visualization Techniques for High Performance Computing’. 2017. uRl:
https://www.cs.uoregon.edu/Reports/AREA-201703-Kress.pdf (visited on 06/03/2021).

[5] Medvecký-Heretik Jakub. ‘Real-time Water Simulation in Game Environment’. PhD thesis.
Masaryk University, Faculty of Informatics, 2018.

[6] Jos Stam. ‘Stable Fluids’. In: Proceedings of the 26th Annual Conference on Computer Graphics

and Interactive Techniques. SIGGRAPH ’99. USA: ACM Press/Addison-Wesley Publishing
Co., 1999, pp. 121–128. isbn: 0201485605. doi: 10.1145/311535.311548.

[7] Peter Sikachev. ‘Real-Time Fluid Simulation in Shadow of the Tomb Raider’. 2018.

[8] Michael Griebel, Thomas Dornseifer and Tilman Neunhoeffer. Numerical simulation in fluid

dynamics: a practical introduction. SIAM, 1998. doi: 10.1137/1.9780898719703.fm.

108

https://doi.org/10.1071/wf06143
https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/aa-v2-i2-fluid-dynamics-on-big-screen.pdf
https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/aa-v2-i2-fluid-dynamics-on-big-screen.pdf
https://www.cs.uoregon.edu/Reports/AREA-201703-Kress.pdf
https://doi.org/10.1145/311535.311548
https://doi.org/10.1137/1.9780898719703.fm

[9] R.B. Bird, W.E. Stewart and E.N. Lightfoot. Transport Phenomena. Transport Phenomena v. 1.
Wiley, 2006. isbn: 9780470115398.

[10] G. Falkovich. Fluid Mechanics. Cambridge University Press, 2018. isbn: 9781107129566.

[11] Francis H. Harlow and J. Eddie Welch. ‘Numerical Calculation of Time-Dependent Viscous
Incompressible Flow of Fluid with Free Surface’. In: Physics of Fluids 8.12 (1965), p. 2182.
issn: 00319171. doi: 10.1063/1.1761178.

[12] M Perić, R Kessler and G Scheuerer. ‘Comparison of Finite-Volume Numerical Methods with
Staggered and Colocated Grids’. In: Comput. Fluids 16.4 (September 1988), pp. 389–403. issn:
0045-7930. doi: 10.1016/0045-7930(88)90024-2.

[13] B. D. Nichols and C.W. Hirt. ‘Methods for Calculating Multi-Dimensional, Transient, Free
Surface Flows Past Bodies’. In: First International Conference on Numerical Ship

Hydrodynamics (20th–22nd October 1975). Ed. by Joanna W. Schot and Nils Salvesen. David
W. Taylor Naval Ship Research and Development Center, 1975, pp. 253–278.

[14] Murilo F. Tome and Sean McKee. ‘GENSMAC: A Computational Marker and Cell Method for
Free Surface Flows in General Domains’. In: Journal of Computational Physics 110.1 (1994),
pp. 171–186. issn: 0021-9991. doi: 10.1006/jcph.1994.1013.

[15] L. Adams and J. Ortega. ‘A multi-color SOR method for parallel computation’. In: 11th
International Conference on Parallel Processing - ICPP. 1982, pp. 53–56.

[16] David M. Young. Iterative Solution of Large Linear Systems. Academic Press, 1971. isbn:
9780127730509.

[17] ‘L2 norm’. In: Encyclopedia of Biometrics. Ed. by Stan Z. Li and Anil Jain. Boston, MA:
Springer US, 2009, pp. 883–883. isbn: 978-0-387-73003-5. doi:
10.1007/978-0-387-73003-5_1070.

[18] Masayuki Kuba, Constantine D. Polychronopoulos and Kyle Gallivan. ‘The Synergetic Effect
of Compiler, Architecture, and Manual Optimizations on the Performance of CFD on
Multiprocessors’. In: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing.
Supercomputing ’95. San Diego, California, USA: Association for Computing Machinery,
1995, 72–es. isbn: 0897918169. doi: 10.1145/224170.224426.

[19] Zhe Fan et al. ‘GPU Cluster for High Performance Computing’. In: Proceedings of the 2004
ACM/IEEE Conference on Supercomputing. SC ’04. USA: IEEE Computer Society, 2004, p. 47.
isbn: 0769521533. doi: 10.1109/SC.2004.26.

[20] Tianyun Ni. ‘Direct Compute - Bring GPU Compute to the Mainstream’. 2009.

109

https://doi.org/10.1063/1.1761178
https://doi.org/10.1016/0045-7930(88)90024-2
https://doi.org/10.1006/jcph.1994.1013
https://doi.org/10.1007/978-0-387-73003-5_1070
https://doi.org/10.1145/224170.224426
https://doi.org/10.1109/SC.2004.26

[21] Kyle E Niemeyer and Chih-Jen Sung. ‘Recent Progress and Challenges in Exploiting
Graphics Processors in Computational Fluid Dynamics’. In: J. Supercomput. 67.2 (February
2014), pp. 528–564. issn: 0920-8542. doi: 10.1007/s11227-013-1015-7.

[22] Jean-Michel Muller et al. ‘The Fused Multiply-Add Instruction’. In: Handbook of
Floating-Point Arithmetic. Birkhäuser Boston, 2010, pp. 151–179. doi:
10.1007/978-0-8176-4705-6_5.

[23] Rokiatou Diarra. ‘Towards Automatic Restrictification of CUDA Kernel Arguments’. In:
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering. ASE 2018. New York, NY, USA: Association for Computing Machinery, 2018,
pp. 928–931. isbn: 9781450359375. doi: 10.1145/3238147.3241533.

[24] Mark Harris. Optimizing Parallel Reduction in CUDA. Tech. rep. uRl:
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf.

[25] O Kreylos et al. ‘Interactive Visualization and Steering of CFD Simulations’. In: Proceedings
of the Symposium on Data Visualisation 2002. VISSYM ’02. Goslar, DEU: Eurographics
Association, 2002, pp. 25–34. isbn: 158113536X. doi: 10.5555/509740.509745.

[26] William Schroeder and Bill Lorenson. Visualization Toolkit: An Object-Oriented Approach to

3-D Graphics. 1st. USA: Prentice Hall PTR, 1996. isbn: 0131998374.

[27] William E. Lorensen and Harvey E. Cline. ‘Marching Cubes: A High Resolution 3D Surface
Construction Algorithm’. In: SIGGRAPH Comput. Graph. 21.4 (August 1987), pp. 163–169.
issn: 0097-8930. doi: 10.1145/37402.37422.

[28] M. Schulz et al. ‘Interactive visualization of fluid dynamics simulations in locally refined
cartesian grids’. In: Proceedings Visualization ’99 (Cat. No.99CB37067). 1999, pp. 413–553. doi:
10.1109/VISUAL.1999.809918.

[29] Shyh-Kuang Ueng, C. Sikorski and Kwan-Liu Ma. ‘Efficient streamline, streamribbon, and
streamtube constructions on unstructured grids’. In: IEEE Transactions on Visualization and

Computer Graphics 2.2 (1996), pp. 100–110. doi: 10.1109/2945.506222.

[30] Lei Chen et al. ‘A new seismic data visualization method’. In: 2016 22nd International
Conference on Automation and Computing (ICAC). 2016, pp. 467–472. doi:
10.1109/IConAC.2016.7604964.

[31] K. Gaither. ‘Visualization’s role in analyzing computational fluid dynamics data’. In: IEEE
Computer Graphics and Applications 24.3 (2004), pp. 13–15. doi:
10.1109/MCG.2004.1297005.

[32] D.A. Lane. ‘Visualization of time-dependent flow fields’. In: Proceedings Visualization ’93.
1993, pp. 32–38. doi: 10.1109/VISUAL.1993.398848.

110

https://doi.org/10.1007/s11227-013-1015-7
https://doi.org/10.1007/978-0-8176-4705-6_5
https://doi.org/10.1145/3238147.3241533
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://doi.org/10.5555/509740.509745
https://doi.org/10.1145/37402.37422
https://doi.org/10.1109/VISUAL.1999.809918
https://doi.org/10.1109/2945.506222
https://doi.org/10.1109/IConAC.2016.7604964
https://doi.org/10.1109/MCG.2004.1297005
https://doi.org/10.1109/VISUAL.1993.398848

[33] NVIDIA AMPERE GA102 GPU ARCHITECTURE. Tech. rep. 2020. uRl: https:
//www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-

ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf (visited on 22/02/2021).

[34] Louis Dionne. ‘Runtime Polymorphism: Back to the Basics’. CppCon 2017. November 2017.
uRl: https://www.youtube.com/watch?v=gVGtNFg4ay0.

[35] M. Lipovača. Learn You a Haskell for Great Good!: A Beginner’s Guide. No Starch Press Series.
No Starch Press, 2011. isbn: 9781593272838.

[36] The Khronos Group Inc. Vulkan 1.1 Reference Guide. Tech. rep. uRl:
https://www.khronos.org/vulkan.

[37] NVIDIA GeForce GTX 1080. Tech. rep. 2016. uRl:
https://international.download.nvidia.com/geforce-

com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf (visited on
23/04/2021).

[38] ‘IEEE Standard for Floating-Point Arithmetic’. In: IEEE Std 754-2019 (Revision of IEEE

754-2008) (2019), pp. 1–84. doi: 10.1109/IEEESTD.2019.8766229.

[39] Craig W. Reynolds. ‘Flocks, herds, and schools: A distributed behavioral model’. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH 1987. New York, New York, USA: Association for Computing Machinery, Inc,
August 1987, pp. 25–34. isbn: 0897912276. doi: 10.1145/37401.37406.

[40] Sebastian Lindqvist. ‘Performance Evaluation of Boids on the GPU and CPU’. PhD thesis.
Blekinge Institute of Technology, Faculty of Computing, 2018. uRl:
https://urn.kb.se/resolve?urn=urn:nbn:se:bth-15970.

[41] NVIDIA. NVIDIA CUDA Programming Guide. 2007.

[42] Mark Harris. How to Access Global Memory Efficiently in CUDA C/C++ Kernels | NVIDIA

Developer Blog. NVIDIA. January 2013. uRl: https://developer.nvidia.com/blog/how-
access-global-memory-efficiently-cuda-c-kernels/.

[43] NVIDIA. Global Memory - CUDA C++ Programming Guide. Version v11.3.0. uRl:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-

memory-3-0.

[44] PTX ISA :: CUDA Toolkit Documentation. Version v11.3.0. NVIDIA. 2021. uRl:
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html.

[45] SIMD Intrinsics | CUDA Math API :: CUDA Toolkit Documentation. Version v11.3.0. NVIDIA.
2021. uRl: https://docs.nvidia.com/cuda/cuda-math-
api/group__CUDA__MATH__INTRINSIC__SIMD.html.

111

https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.youtube.com/watch?v=gVGtNFg4ay0
https://www.khronos.org/vulkan
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1145/37401.37406
https://urn.kb.se/resolve?urn=urn:nbn:se:bth-15970
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-memory-3-0
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-memory-3-0
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__INTRINSIC__SIMD.html
https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__INTRINSIC__SIMD.html

[46] Alan Gray. Getting Started with CUDA Graphs | NVIDIA Developer Blog. NVIDIA. September
2019. uRl: https://developer.nvidia.com/blog/cuda-graphs/.

[47] Mark Harris. Unified Memory for CUDA Beginners | NVIDIA Developer Blog. NVIDIA. June
2017. uRl: https://developer.nvidia.com/blog/unified-memory-cuda-beginners/.

[48] NVIDIA. CUDA Zone | NVIDIA Developer. 2020. uRl:
https://developer.nvidia.com/cuda-zone.

[49] CUDA Occupancy Calculator. NVIDIA. uRl:
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html (visited on
01/05/2021).

[50] fmad | NVCC :: CUDA Toolkit Documentation. Version v11.3.0. NVIDIA. 2021. uRl:
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#options-

for-steering-gpu-code-generation-fmad.

[51] Floating Point and IEEE 754 :: CUDA Toolkit Documentation. Version v11.3.0. NVIDIA. 2021.
uRl: https://docs.nvidia.com/cuda/floating-point/index.html#fused-multiply-
add-fma.

[52] Known Issues | CUDA-MEMCHECK :: CUDA Toolkit Documentation. Version v11.3.0. NVIDIA.
2021. uRl: https://docs.nvidia.com/cuda/cuda-memcheck/index.html#known-issues.

[53] Compute Sanitizer - Release Notes. Version v2021.1.0. NVIDIA. March 2021. uRl:
https://docs.nvidia.com/cuda/sanitizer-docs/pdf/ReleaseNotes.pdf.

[54] The Khronos Group Inc.The Khronos Group Releases OpenCL 1.0 Specification. 2008. uRl:
https://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_

specification.

[55] The Khronos Group Inc et al. ARB_compute_shader. The Khronos Group Inc. uRl: https:
//www.khronos.org/registry/OpenGL/extensions/ARB/ARB_compute_shader.txt.

[56] Vulkan® 1.1.176 - A Specification. The Khronos Group. 2021. uRl:
https://www.khronos.org/registry/vulkan/specs/1.1/html/vkspec.html.

[57] The Khronos Group. OpenCL Overview - The Khronos Group Inc. uRl:
https://www.khronos.org/opencl/.

[58] Computing and the Manhattan Project. Atomic Heritage Foundation. 2014. uRl:
https://www.atomicheritage.org/history/computing-and-manhattan-project.

[59] Adam Chester and Graham Martin. CS257 Advanced Computer Architecture Coursework. 2020.

[60] S. Stark. CS257 Report - Reducing the Execution Time of a Fluid Simulation Program. 2020.

[61] OpenMP. Home - OpenMP. uRl: https://www.openmp.org/.

112

https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/cuda-zone
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#options-for-steering-gpu-code-generation-fmad
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#options-for-steering-gpu-code-generation-fmad
https://docs.nvidia.com/cuda/floating-point/index.html#fused-multiply-add-fma
https://docs.nvidia.com/cuda/floating-point/index.html#fused-multiply-add-fma
https://docs.nvidia.com/cuda/cuda-memcheck/index.html#known-issues
https://docs.nvidia.com/cuda/sanitizer-docs/pdf/ReleaseNotes.pdf
https://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification
https://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_compute_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_compute_shader.txt
https://www.khronos.org/registry/vulkan/specs/1.1/html/vkspec.html
https://www.khronos.org/opencl/
https://www.atomicheritage.org/history/computing-and-manhattan-project
https://www.openmp.org/

[62] Introduction to Intel® Advanced Vector Extensions. Intel Corporation. 2011. uRl:
https://software.intel.com/content/www/us/en/develop/articles/introduction-

to-intel-advanced-vector-extensions.html.

[63] Autodesk Acquires ALGOR. MCADCafe, December 2008. uRl: https://www.mcadcafe.com/
nbc/articles/view_article.php?section=Magazine&articleid=637593.

[64] Definition of Streamlines. NASA. 2015. uRl:
https://www.grc.nasa.gov/WWW/k-12/airplane/stream.html.

[65] Autodesk. Autodesk CFD 2019. 2019. uRl:
https://help.autodesk.com/view/SCDSE/2019/ENU/.

[66] Autodesk. Exercise 7 | CFD. 2019. uRl:
https://knowledge.autodesk.com/support/cfd/learn-

explore/caas/CloudHelp/cloudhelp/2014/ENU/SimCFD/files/GUID-ADAF2C66-9992-

43FA-B5FB-5CB13F967DAD-htm.html.

[67] 10 Day Trend – Big changes ahead 03/03/21. Met Office - Weather. March 2021. uRl:
https://www.youtube.com/watch?v=y_1--MkiNjQ.

[68] János Turánszki. GPU-based particle simulation. wickedengine.net. November 2017. uRl:
https://wickedengine.net/2017/11/07/gpu-based-particle-simulation/.

[69] CODE OF CONDUCT FOR BCS MEMBERS. British Computing Society. 2015. uRl:
https://www.bcs.org/upload/pdf/conduct.pdf.

[70] Git. 2020. uRl: https://git-scm.com/.

[71] The Open Group Base Specifications. 7. IEEE and The Open Group. 2018. uRl:
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html.

[72] Google LLC. shaderc. uRl: https://github.com/google/shaderc/tree/main/glslc.

[73] Simple DirectMedia Layer - Homepage. uRl: https://www.libsdl.org/.

[74] Omar Cornut. Dear ImGui. uRl: https://github.com/ocornut/imgui.

[75] attractivechaos. A survey of argument parsing libraries in C/C++. August 2018. uRl:
https://attractivechaos.wordpress.com/2018/08/31/a-survey-of-argument-

parsing-libraries-in-c-c/.

[76] Free Software Foundation. getopt(3): Parse options - Linux man page. uRl:
https://linux.die.net/man/3/getopt.

[77] GNU Project. Argp (The GNU C Library). uRl:
https://www.gnu.org/software/libc/manual/html_node/Argp.html.

113

https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://www.mcadcafe.com/nbc/articles/view_article.php?section=Magazine&articleid=637593
https://www.mcadcafe.com/nbc/articles/view_article.php?section=Magazine&articleid=637593
https://www.grc.nasa.gov/WWW/k-12/airplane/stream.html
https://help.autodesk.com/view/SCDSE/2019/ENU/
https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2014/ENU/SimCFD/files/GUID-ADAF2C66-9992-43FA-B5FB-5CB13F967DAD-htm.html
https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2014/ENU/SimCFD/files/GUID-ADAF2C66-9992-43FA-B5FB-5CB13F967DAD-htm.html
https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2014/ENU/SimCFD/files/GUID-ADAF2C66-9992-43FA-B5FB-5CB13F967DAD-htm.html
https://www.youtube.com/watch?v=y_1--MkiNjQ
https://wickedengine.net/2017/11/07/gpu-based-particle-simulation/
https://www.bcs.org/upload/pdf/conduct.pdf
https://git-scm.com/
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
https://github.com/google/shaderc/tree/main/glslc
https://www.libsdl.org/
https://github.com/ocornut/imgui
https://attractivechaos.wordpress.com/2018/08/31/a-survey-of-argument-parsing-libraries-in-c-c/
https://attractivechaos.wordpress.com/2018/08/31/a-survey-of-argument-parsing-libraries-in-c-c/
https://linux.die.net/man/3/getopt
https://www.gnu.org/software/libc/manual/html_node/Argp.html

[78] Tom Vajzovic. Gopt - Free command line option and argument parsing C library. uRl:
https://www.purposeful.co.uk/software/gopt/.

[79] jarro2783. cxxopts: Lightweight C++ command line option parser. uRl:
https://github.com/jarro2783/cxxopts.

[80] CLIUtils. CLI11. uRl: https://github.com/CLIUtils/CLI11.

[81] Move constructors. cppreference.com. uRl:
https://en.cppreference.com/w/cpp/language/move_constructor.

[82] James Archbold. CS261 Software Engineering. 2020.

[83] Levels of Testing. ReQTest. uRl:
https://reqtest.com/testing-blog/different-levels-of-testing/ (visited on
01/05/2021).

[84] Tomasz Gebarowski. Glib, GObject and memory leaks. August 2008. uRl:
https://tgebarowski.github.io/2008/08/21/glib-gobject-and-memory-leaks/.

[85] Raphael Monnerat. Unity-GPU-Boids. uRl:
https://github.com/Shinao/Unity-GPU-Boids (visited on 01/05/2021).

[86] Cyrille Rossant. Datoviz: GPU interactive scientific data visualization with Vulkan. uRl:
https://github.com/datoviz/datoviz (visited on 01/05/2021).

[87] Vulkan Memory Allocator. GPUOpen. uRl:
https://gpuopen.com/vulkan-memory-allocator/ (visited on 01/05/2021).

[88] Sascha Willems. Vulkan C++ examples and demos. uRl:
https://github.com/SaschaWillems/Vulkan (visited on 01/05/2021).

114

https://www.purposeful.co.uk/software/gopt/
https://github.com/jarro2783/cxxopts
https://github.com/CLIUtils/CLI11
https://en.cppreference.com/w/cpp/language/move_constructor
https://reqtest.com/testing-blog/different-levels-of-testing/
https://tgebarowski.github.io/2008/08/21/glib-gobject-and-memory-leaks/
https://github.com/Shinao/Unity-GPU-Boids
https://github.com/datoviz/datoviz
https://gpuopen.com/vulkan-memory-allocator/
https://github.com/SaschaWillems/Vulkan

APPENDIXA

Smart Resource Classes

This appendix lists the Smart Resource Classes included in the codebase, showing a
brief overview of the kinds of resources used by the program. Each of these classes
primarily manages the lifetime of one or more resources, which could be some form
of memory or Vulkan/CUDA objects.

• Sim2DArray

• SimRedBlackArray

• VulkanCudaBufferMemory

• FrameAllocator

• FrameSetAllocator

• VulkanSimAppData

• VulkanSimAppPipelineSet

• VulkanBackedBuffer

• VulkanBackedFramebuffer

• VulkanBackedGPUBuffer_WithStaging

• VulkanBackedGPUImage

• VulkanDescriptorSetLayout

115

• VulkanDeviceMemory

• VulkanFence

• VulkanFramebuffer

• VulkanImageSampler

• VulkanPipeline

• VulkanPipelineSpecMap

• VulkanRenderPass

• VulkanSemaphore

• VulkanShader

• VulkanSwapchain

• CudaGraphCapture

• CudaVulkanSemaphore

116

APPENDIXB

Previous Project Reports

117

Optimized Visualization of
Fluid Simulations

Samuel Stark - u1800081 - 10th March 2020

Disclaimer

• The scope of this project is huge!

• 8,500 lines of code over 146 files (not
including comments, blank space, libraries)

• I can’t talk about everything interesting in 15
minutes.

• This is going to be a whistle-stop tour of the
best bits.

• Ask me anything after the presentation and I
can talk your ear off.

Timestep calculations Agnostic sim runners

CUDA Unified Memory Origin-aware pointers

Parallel Reductions CUDA Graphs

const __restrict__ Frame allocation

Image Layout Transfers Vulkan Memory Model

CUDA Warps Push Constants

Specialization Constants Indirect Dispatch/Draw

Indexed Rendering Semaphores

Fences Vulkan Memory Allocation

Memory Alignment Atomic Variables

and more!

Table 1: Interesting things I could talk
about

1/42

B.1 Presentation

118

CFD, Simulations, and High-Speeds

• Equations modelling real-world phenomena have been around for centuries.

• Computational Fluid Dynamics programs (CFD) solve the Navier-Stokes equations to
simulate fluid flow.

• Used in many fields:
• Aerodynamics [Jameson et al. 2002]

• Fire Spread Modelling [Sullivan 2009]

• Entertainment Industry [‘Fluid Dynamics on the Big Screen’ 2008; Medvecký-Heretik Jakub
2018]

• Generally interactive speeds and precise simulation not pursued together.

2/42

Project Motivation

• CS257 coursework presented a fluid simulation from [Griebel et al. 1998], tasked
students with optimizing it for a 6-core CPU.

• My solution [Stark 2020] ran 64x faster than the original, and 7.9x faster than real-time,
on the given input data.

• But the simulation was still limited:
• We were prevented from running it on a GPU for greater speedups.

• Results could only be visualized after the fact, even though it was fast enough to
render in real time.

3/42

119

Project Goals/Achievements

Port the simulation to the GPU.

Exploit the speedup to improve accuracy and increase sim resolution.

Intuitively visualize the simulation in real time.1

All goals were achieved!

1Use games industry techniques for efficient rendering.
4/42

Table of Contents

1. Intro

2. Simulation
Overview
Optimizations

3. Visualization

4. Evaluation

5. Project Management

6. Conclusion & Future Work

5/42

120

Simulation Overview

• Simulation code preserved from CS257
submission.

• Simulates “laminar flows of viscous,
incompressible fluids”.

• Fluid is represented by a 2D array of cells.

• Fluid flows around static ‘obstacle’ cells.

• Generates values for velocity (u, v) and relative
pressure p.

Figure 1: Laminar vs. turbulent fluid
flow. Reproduced from

cfdsupport.com

6/42

Simulation Structure

• Simulation runs in ‘ticks’, each representing a
discrete timestep δt.

• Each ‘tick’ has multiple sequential execution
stages.

• Each stage has been optimized to be
embarassingly parallel.

• Poisson Solver runs for a constant amount of
iterations each tick.

Compute δt

Compute Tentative Velocity

Compute Poisson RHS

Poisson Solver

Update Velocity

Boundary Conditions

N iterations

Figure 2: An example simulation tick

7/42

121

Simulation Kernels
• This maps incredibly well to CUDA ‘kernels’2.

• Each stage is implemented as one or more kernels, run over every element in parallel.

// Computing delta-t is done slightly differently (ask me about it at the end!)

__global__ void computeTentativeVelocity_apply(...);
__global__ void computeTentativeVelocity_postproc_vertical(...);
__global__ void computeTentativeVelocity_postproc_horizontal(...);

__global__ void computeRHS_1per(...);

__global__ void poisson_single_tick(...);

__global__ void updateVelocity_1per(...);

__global__ void boundaryConditions_preproc_vertical(...);
__global__ void boundaryConditions_preproc_horizontal(...);
__global__ void boundaryConditions_apply(...);
__global__ void boundaryConditions_inputflow_west_vertical(...);

2https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#kernels
8/42

CUDA Unified Memory

• CUDA provides Unified Memory
allocations3

• Paged between the Host and Device
on-demand.

• Same performance as normal GPU
memory when present on the device.

• Used to mix CPU and GPU
implementations while testing and
debugging.

3https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
9/42

122

const __restrict__ pointers

• CUDA exposes a fast “read-only data
cache”4.

• To ensure the compiler knows memory is
read only, use the const and
__restrict__ qualifiers on all pointers.

• Shown to speed up execution times in
[Diarra 2018].

template<typename T>
using in_matrix =

const T* const __restrict__;

template<typename T>
using out_matrix =

T* const __restrict__;

Figure 3: Helper templates used in
kernel definitions

Ask me about const __restrict__ pointers at the end!

4https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-memory-3-0
10/42

Parallel Reductions

• Computing δt requires the maximum values of u, v.

• We can do this in parallel on the GPU!

• Find the values on the GPU, then copy them to the
CPU to calculate δt.

• Implementation taken from [Harris n.d.].

Figure 4: Example of parallel
reduction for sum.

Reproduced from eximiaco.tech

11/42

123

CUDA Graphs
• CPU overhead when launching Poisson kernels caused large GPU bubbles.

• Instead of launching N times, record a CUDA Graph5 that runs N iterations, and launch it
once.

• Theoretical 2x speedup.

for (int i = 0; i < 100; i++) {
launch poisson on stream;

}

Individual Launches

(record poisson100Iters if not present)

cudaGraphLaunch(poisson100Iters, stream);

With CUDA Graphs
5https://developer.nvidia.com/blog/cuda-graphs/

12/42

Table of Contents

1. Intro

2. Simulation

3. Visualization
Research
Design
Implementation

4. Evaluation

5. Project Management

6. Conclusion & Future Work

13/42

124

Visualization Research I

• This program is an example of ‘tightly-coupled in-situ visualization’ [Kress 2017].

• Academia hasn’t recently innovated in fluid visualization, only in methods for running
faster such as [Shyh-Kuang Ueng et al. 1996].

• This was noted in [Gaither 2004], which states ‘feature detection’ would be a key element
going forward rather than new visualization methods.

14/42

Visualization Research II

• Industry seems to match this
assessment.

• Tools such as Autodesk CFD, Tecplot,
ParaView all visualize data with the same
general methods...

• but they allow the data to be filtered to
extract relevant values.

• Methods can be combined to show a
range of information.

Figure 5: Weather Forecast showing wind
speed, weather fronts, and cloud cover.6

6https://youtu.be/y_1--MkiNjQ, Met Office 10 Day Trend for March 3rd.
15/42

125

Visualization Research
What can Autodesk CFD do?

Result Planes - Scalar

• Place a plane in 3D space

• Select a scalar quantity (pressure,
temperature etc.)

• The cross-section of the model shows the
selected quantity, with a color scale

16/42

Visualization Research
What can Autodesk CFD do?

Result Planes - Vector

• Place a plane in 3D space

• Select a vector quantity (velocity etc.)

• The cross-section of the model shows a
vector field of the selected velocity.

17/42

126

Visualization Research
What can Autodesk CFD do?

Isosurfaces

• Select a scalar quantity X.

• Select a value X = x.

• This surface is displayed with a color
based on another quantity Y.

• A vector quantity can also be added to the
surface.

18/42

Visualization Research
What can Autodesk CFD do?

Isovolumes

• Select a scalar quantity X.

• Select a range xmin ≤ X ≤ xmax.

• This volume is displayed with a color
based on another quantity Y.

• A vector quantity can also be added to the
volume.

19/42

127

Visualization Research
What can Autodesk CFD do?

Particles

• Place particle spawn points (‘seeds’).

• Select a scalar quantity to display, or a
solid color.

• Points along the particle paths show the
specified quantity.

• Can choose many kinds of path:
• Cylinders
• Ribbons
• Comets
• etc.

20/42

Selected Features
Separate the visualization into layers:

• Background

• Scalar Quantity
• Display a quantity X using a colormap when xmin ≤ X ≤ xmax
• Allow the user to select a range, or calculate a range containing all values
• Equivalent to Results Plane (Scalar) + 2D Isovolume

• Vector Quantity
• Display a vector field of X when xmin ≤ X ≤ xmax
• Allow the user to select a range, or calculate a range containing all values
• Equivalent to Results Plane (Vector) + 2D Isovolume

• Particles
• Editable ‘seeds’
• Planned for particle trace options, didn’t have time.

21/42

128

Anatomy of a Frame

GPU

CPU 0

CPU 1

Viz
N-1

Simulation
N

Viz Compute
N

Viz Graphics
N

Sim
N+1

Launch Sim Kernels

Record Visualization

• CPU 0 launches the simulation, which requires some CPU/GPU sync at the start.

• CPU 1 enqueues the visualization work to start right after the simulation.

• Sim and Visualization share memory, architecture is zero-copy.

• Maintains near-100% GPU Utilization.
22/42

GPU Synchronization

GPU - CUDA

GPU - Vulkan Viz Comp
N-1

Viz Graphics
N-1

Simulation
N

Viz Compute
N

Viz Graphics
N

Sim
N+1

• Synchronization between overall workloads is performed via semaphores7.

• One workload waits on a semaphore until another workload signals it.

• Compute workloads cannot overlap on my graphics card8

• Simulation and Viz Graphics could overlap, but don’t in practice.
7https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkSemaphore.html
8Running parallel compute workloads was introduced in [NVIDIA AMPERE GA102 GPU ARCHITECTURE 2020]

23/42

129

GPU Synchronization - Less Misleading

GPU - CUDA

GPU - Vulkan Viz Comp
N-1

Viz Graphics
N-1

Simulation
N

Viz Compute
N

Viz Graphics
N

Sim
N+1

• Synchronization between overall workloads is performed via semaphores9.

• One workload waits on a semaphore until another workload signals it.

• Compute workloads cannot overlap on my graphics card10

• Simulation and Viz Graphics could overlap, but don’t in practice.
9https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkSemaphore.html

10Running parallel compute workloads was introduced in [NVIDIA AMPERE GA102 GPU ARCHITECTURE 2020]
24/42

Extracting Simulation Data

• First part of Viz Compute.

• Transfer + interpolate data from 1D
arrays to a 2D texture.

• More complex than a simple copy.

• Allows arbitrary sampling, using built-in
texture filtering for free interpolation.

float u[], v[], p[], isfluid[];

int idx = i * pConsts.height + j;
vec2 velocity = vec2(u[idx], v[idx]);

uniform sampler2D simDataSampler;
// = (u, v, p, isfluid);

// 50% across, 20% up the image
vec2 sampleAt = (0.5, 0.2);
vec2 velocity =

texture(simDataSampler, sampleAt).xy;

Ask me about Simulation Data Textures at the end!

25/42

130

Per-Layer Viz Work
Scalar Quantity

Vector Quantity

Particles

Extract Quantity Find min/max
(Optional)

Extract Quantity Find min/max
(Optional)

Create Vector
Instances

Decide Particles
to emit

Emit new
Particles

Simulate
Particles

Draw
Background
w/ Quantity

Draw
Vector Instances

Draw
Particles

Compute Graphics

• Compute Pipelines use one Compute Shader, roughly equivalent to CUDA Kernels.

• Graphics Pipelines use a Vertex Shader and a Fragment Shader to draw to a render target.

• There is also a ‘final composite’ stage which renders the GUI with the viz output.
26/42

Viz Compute Order

Extract Sim
Data Texture

Extract Scalar
Quantity

Find Scalar
min/max

Extract
Vector
Quantity

Find Vector
min/max

Create Vector
Instances

Scalar Quantity Vector Quantity

Viz Compute

• Computer work for layers is done serially, not in parallel (which could be improved in the
future).

• Vulkan uses Execution and Memory Barriers to ensure ordering. (Ask me about this at
the end!)

• Vectors and Particles are drawn with Indirect Instanced rendering.
27/42

131

Indirect Instanced Rendering

GPU
Draw 8
particles

Positions of
8 particles

Simulate
??? particles

Draw N
particles

N = 24
Positions of 24+ particles

read write read

Instanced Rendering Indirect Instanced Rendering

• We don’t know how many Vectors/Particles exist at record time.

• Tell the GPU to look somewhere in memory to find how many copies to render.

Ask me about indirect/instanced/indexed rendering at the end!

28/42

Result!

29/42

132

Table of Contents

1. Intro

2. Simulation

3. Visualization

4. Evaluation

5. Project Management

6. Conclusion & Future Work

30/42

GPU Utilization

• GPU Utilization is close to 100% where possible.

• At tick boundaries some bubbles appear as the CPU calculates the next δt.

• When visualizing, the Vulkan work hides this.

Tick Boundary
Overall Visualization Pipeline

31/42

133

Speed

• Simulates the original CS257 input 2.47-2.86x faster than the original code.

• Visualization takes 1.35ms per frame (740 FPS) at highest iteration count N = 1000

• Individual visualization features are quick, and combined take less time than the
simulation.11

Base Frame with Sim Scalar Quantity Vector Field Particles

Mean Time (ms) 0.30 1.18 0.39 0.46 0.42

△ from base (ms) - +0.88 +0.09 +0.16 +0.12

11All points measured here in worst-case: with auto-range on where possible, and with maximum particles onscreen.
32/42

Difference vs. Original
• The program contains a comparison tool for checking similarity.

• Simulating the original CS257 test has a mean square error of 10−14 for velocities, and
10−9 for pressure.

• As iteration count and simulation time increases, the error becomes larger.

• Multiple potential causes in algorithm and implementation, but haven’t researched
further.

N 100 200 300 1000

Velocity MSE (u,v) 10−14 10−14 10−14 10−14

Pressure MSE (p) 10−9 10−8 10−7 10−6

Mean Square Error for original CS257 input data, simulated for 10 s

33/42

134

Table of Contents

1. Intro

2. Simulation

3. Visualization

4. Evaluation

5. Project Management

6. Conclusion & Future Work

34/42

Project Management
• Schedule defined as part of the Specification, planned for coding and writing reports.

• Code Freeze on Week 22 was very helpful

• Gave me enough time to finish the presentation!

University Week

Specification

CFD Research

Initial Simulation Porting

Basic Visualization

Progress Report

Visualization Research

Visualization Development

Simulation Optimization

Presentation

1 3 5 7 9 11 13 15 17 19 21 23

Code Freeze

Christmas
break
and
other
work

35/42

135

Table of Contents

1. Intro

2. Simulation

3. Visualization

4. Evaluation

5. Project Management

6. Conclusion & Future Work

36/42

Conclusion

• Overall, the project was a success.

• CUDA is a very intuitive API, especially for those without prior compute experience.

• Vulkan requires more heavy lifting, but it seems to have been worth it.

• Looking to the games industry for advice in i.e. particle rendering is helpful.

• For the scientific community to start using Vulkan, simple abstraction layers will be
needed.

• VTK, a popular visualization library, has a Vulkan branch that seems to be dead.

• Datoviz is a new library with Python bindings that renders with Vulkan.

• CUDA-Vulkan interoperability is nice! Resources should be allocated from Vulkan to
maintain full control.

37/42

136

Future Work

Simulation
• Investigate simulation accuracy and algorithm.

• Re-introduce the Poisson accuracy check.

• Optimize parallel reductions.

Visualization
• Investigate colorblindness options.

• Better memory allocation, potentially using a helper library.

• Run different layer computations in parallel with separate command buffers?

38/42

Demo + Questions

137

References I

‘Fluid Dynamics on the Big Screen’. In: ANSYS Advantage II.2 (2008), pp. 52–53.
URL: https://www.ansys.com/-
/media/ansys/corporate/resourcelibrary/article/aa-v2-i2-fluid-
dynamics-on-big-screen.pdf.

NVIDIA AMPERE GA102 GPU ARCHITECTURE. Tech. rep. 2020. URL:
https://www.nvidia.com/content/dam/en-
zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-
Whitepaper-V1.pdf (visited on 22/02/2021).

Rokiatou Diarra. ‘Towards Automatic Restrictification of CUDA Kernel Arguments’.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ASE 2018. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 928–931. ISBN: 9781450359375. DOI:
10.1145/3238147.3241533. URL: https://doi.org/10.1145/3238147.3241533.

39/42

References II

K. Gaither. ‘Visualization’s role in analyzing computational fluid dynamics data’. In:
IEEE Computer Graphics and Applications 24.3 (2004), pp. 13–15. DOI:
10.1109/MCG.2004.1297005.

Michael Griebel, Thomas Dornseifer and Tilman Neunhoeffer. Numerical simulation
in fluid dynamics: a practical introduction. SIAM, 1998.

Mark Harris. Optimizing Parallel Reduction in CUDA. Tech. rep. URL:
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf.

Antony Jameson, Luigi Martinelli and J Vassberg. ‘Using computational fluid
dynamics for aerodynamics–a critical assessment’. In: Proceedings of ICAS. 2002,
pp. 2002–1.

James Kress. In Situ Visualization Techniques for High Performance Computing.
2017. URL: www.cs.uoregon.edu/Reports/AREA-201703-Kress.pdf (visited on
06/03/2021).

40/42

138

References III

Medvecký-Heretik Jakub. ‘Real-time Water Simulation in Game Environment’.
PhD thesis. Masaryk University, Faculty of Informatics, 2018.

Shyh-Kuang Ueng, C. Sikorski and Kwan-Liu Ma. ‘Efficient streamline, streamribbon,
and streamtube constructions on unstructured grids’. In: IEEE Transactions on
Visualization and Computer Graphics 2.2 (1996), pp. 100–110. DOI:
10.1109/2945.506222.

S. Stark. ‘CS257 Report - Reducing the Execution Time of a Fluid Simulation
Program’. In: (2020).

Andrew L. Sullivan. ‘Wildland surface fire spread modelling, 1990 - 2007. 1:
Physical and quasi-physical models’. In: International Journal of Wildland Fire 18.4
(2009), p. 349. ISSN: 1049-8001. DOI: 10.1071/wf06143. URL:
http://dx.doi.org/10.1071/WF06143.

41/42

Simulation Data Texture
• Simulation stores data points from a staggered grid.

• Visualization wants to get data at arbitrary locations, which texture hardware is really
good at.

• Convert the original data to a texture 2x the resolution, and interpolate when values aren’t
present.

pi,j pi+1,j

ui−1,j ui,j ui+1,j

vi,j vi+1,j

vi,j−1 vi+1,j−1

pi,j pi+1,j

ui−1,j ui,j ui+1,j

vi,j vi+1,j

vi,j−1 vi+1,j−1

42/42

139

Performance Optimisation and
Visualisation for a Fluid Dynamics

Simulation

CS351 CSE Project

Progress Report

Samuel Stark

Supervisor: Dr. Matt Leeke

Department of Computer Science

University of Warwick

November 2020

B.2 Progress Report

140

Contents
List of Figures iv

List of Tables iv

Preface 1

1 Introduction 2
1.1 Motivation . 2
1.2 Project Aims . 2
1.3 Stakeholders . 3

2 Research 4
2.1 An Example Simulation Tick . 4

2.1.1 The Simulation Variables . 4
2.1.2 Timestep Calculation . 6
2.1.3 Tentative Velocity . 6
2.1.4 Solving the Poisson Equation with SOR 6
2.1.5 Final Velocity Calculations . 8

2.2 Optimization . 9
2.2.1 Background . 9
2.2.2 Previous Work . 9
2.2.3 Future Work . 10

2.3 Visualization . 11
2.3.1 Background . 11
2.3.2 Previous Work . 11
2.3.3 Future Work . 13

3 Ethical, Social, and Legal Issues 14

4 Project Requirements 15
4.1 Functional Requirements . 15
4.2 Non-Functional Requirements . 16
4.3 Hardware and Software Constraints 16

5 Design 17
5.1 Command-Line Interface . 17
5.2 Generating Inputs . 17
5.3 File Formats . 18

5.3.1 Fluid Parameters . 19
5.3.2 Simulation State . 19

5.4 Simulation Backends . 20
5.5 Visualization Pipeline . 20

5.5.1 Work Scheduling . 20
5.5.2 Simulation Timing . 21

5.6 Comparison Heuristics . 22

141

6 Implementation 23
6.1 Library Selection . 23
6.2 Build System . 24

6.2.1 CUDA-less Binaries . 24
6.2.2 Shader Build Infrastructure 24

6.3 Memory Usage . 25
6.4 Current Status . 25

7 Project Management 28
7.1 Software Development Methodology 28
7.2 Project Timeline . 28
7.3 Tools . 29
7.4 Risk Management . 29

7.4.1 Misscheduling . 29
7.4.2 Other Pressures . 30
7.4.3 Loss of Hardware Access . 30
7.4.4 Illness . 30

8 Testing 32
8.1 Unit Testing . 32
8.2 Integration Testing . 32
8.3 Overall Testing . 32

9 Conclusion 33

10 References 34

A Future Plans 39

142

List of Figures
2.1 Discretization points for each variable on the staggered grid[29] . . . 5
2.2 Example checkerboard pattern used for red/black splitting. 8
2.3 Examples of the three outputs available from the ACA visualizer, all

visualizing the same state. 12
5.1 Example usage of the simulation program 17
5.2 An example of converting an image to a simulation state. 18
5.3 An example Fluid Parameters file. 19
5.4 Thread utilization diagram. 21
5.5 Examples outputs from the comparison tool. 22
6.1 Graphics and Compute Backend Interoperability Matrix 23
6.2 An example of conditionally supporting CUDA based on a prepro-

cessor directive. 24
6.3 An example of conditionally changing code based on memory type. . 26
6.4 An example of the real-time visualization running on the ACA input. 26
7.1 Project Schedule as a Gantt Chart . 28

List of Tables
7.1 Project Schedule Tasks . 29
A.1 Possible Extensions . 39

143

Preface
This report shows the progress made on the project since the Specification was sub-
mitted. Notable points include the research done on the structure of a simulation,
and possible optimizations to apply (Section 2), and the implementation of a func-
tional real-time simulation and visualization (Section 6.4).

1

144

1 Introduction
The development of equations and mathematical constructs that model natural phe-
nomena has been a large research space for centuries. As digital computers have
developed, programs have been built to use these equations and find the results much
faster than previously possible[4]. Computational Fluid Dynamics (CFD) programs
are programs that simulate fluid flow in some form, usually using the Navier-Stokes
equations (reproduced in Eqs. (2.1) and (2.2)).

These fluid simulations have a variety of uses, including in aerodynamics[35],fire
spreadmodelling[65], and in the entertainment industry (albeit with a focus on artistic
input rather than physical accuracy[21]).

These cases generally do not require simulations at interactive speeds, except for
those found in the games industry. While the games industry does use fluid simu-
lation[45], many uses do not precisely integrate the Navier-Stokes equations but ap-
proximates them [63] using a Lagrangian method. An exception to this is [61], which
uses a Jacobi solver for the Navier-Stokes equations. This is used to simulate character
interaction with different substances floating on the water surface[61], not to simu-
late large blocks of water. By and large, interactive speeds and precise simulation for
large fields are not pursued together.

1.1 Motivation
The Advanced Computer Architecture coursework last year presented a fluid simula-
tion and tasked the students with optimizing it for a 6-core Intel i5-8500 CPU[9]. The
original code ran very slowly, taking 80 seconds to simulate 10 seconds of time. After
optimizations, the code simulated 10 seconds of time in just 1.26 seconds, 64x faster
than the original and 7.9x faster than real time.[64]

However the simulation purposefully limited itself in some aspects, such as itera-
tion count for an equation solver, which prevented it from converging to an accurate
solution for the test data. Students were also explicitly prevented from accelerating
the simulation using a GPU, which could have made it much faster as each simulation
phase is embarrassingly parallel.

Another limitation was that the simulation state could only be visualized once the
full simulation had completed, instead of in real time, even though the final simulation
was fast enough. This made the results much more difficult to understand, especially
for people who don’t understand the underlying code or mathematics.

1.2 Project Aims
The first goal of this project has been to port the simulation to the GPU. This has
provided a large speedup, with potential to improve it farther (see Section 2.2.3). The
next goals of the project are to exploit this speedup in two ways: to make the simula-
tion more detailed by increasing both the accuracy of the solver and the grid resolu-
tion; and to intuitively visualize the simulation in real time. The GPU simulation has
be implemented in CUDA, and the visualization will be rendered in real time using
Vulkan (see Section 6.1).

2

145

1.3 Stakeholders
Themain stakeholders continue to be the researcher and the project supervisor. They
are both invested into the project due to their own personal interest, and in the case
of the researcher the effect this project has on final year grades.

3

146

2 Research
On top of the preliminary research performed for the Specification document, re-
search of the underlying simulation structure and of the state of the art for optimiz-
ing a simulation has been done. Minor research has been also done for Visualization,
although the schedule dictates this should start after Term 1 has ended.

2.1 An Example Simulation Tick
The 1998 book “Numerical simulation in fluid dynamics : a practical introduction”[29]
defines a basic structure for a discrete simulated timestep (a.k.a. a “tick”) and provides
a sample guide to implementing it in Fortran or C. To the best of the author’s know-
ledge this was used as the base of the ACA coursework, and continues to be the base
of this project. This section will explain the general structure of the simulation as
defined in [29].

The simulation described specifically simulates “laminar flows of viscous, incom-
pressible fluids”[29] in 2D. Laminar flows can be treated as separate layers of particles
that can slide past each other, which interact solely through friction forces. The op-
posite of this is Turbulent flow, where particles maymove between layers due to small
friction forces[29]. This adds extra viscosity (the turbulent eddy viscosity, as covered
in more detail in [7]) which is much more difficult to accurately model.

Incompressible fluids have a uniform density across the entire flow, which greatly
simplifies the calculations. This property can be assumed for low-velocity gases, and
for most liquids[29].

Viscous fluids have high internal friction forces that will eventually bring a mov-
ing fluid to rest. The viscosity is controlled by a parameter known as the Reynolds
number 𝑅𝑒[19], which is constant over the fluid. As 𝑅𝑒 → 0 the viscosity of the fluid
approaches infinity, and as 𝑅𝑒 → ∞ the fluid becomes inviscid, i.e. not viscous. Using
high 𝑅𝑒 this sim could be used to simulate inviscid fluids, although it is important for
the fluid to still be laminar and incompressible.

Any forces acting throughout the bulk of the fluid i.e. gravity can be simulated
using the 𝑔 = (𝑔𝑥 , 𝑔𝑦) vector. However the 2D variant of the simulation has been
used in this project for top-down simulations with a level plane, so this is left unused.

2.1.1 The Simulation Variables

The simulation solves for three variables: horizontal velocity 𝑢, vertical velocity 𝑣 ,
and pressure 𝑝 . These variables are related by the Navier-Stokes momentum and con-
tinuity equations, which can be written as follows:

𝜕𝑢

𝜕𝑡
+

𝜕𝑝

𝜕𝑥
=

1

𝑅𝑒

(
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

)
− 𝜕(𝑢2)

𝜕𝑥
− 𝜕(𝑢𝑣)

𝜕𝑦
+ 𝑔𝑥 ,

𝜕𝑣

𝜕𝑡
+

𝜕𝑝

𝜕𝑦
=

1

𝑅𝑒

(
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2

)
− 𝜕(𝑢𝑣)

𝜕𝑥
− 𝜕(𝑣2)

𝜕𝑦
+ 𝑔𝑦

(2.1)

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (2.2)

4

147

The values of the simulated quantities at tick #𝑛 are represented by 𝑢(𝑛), 𝑣(𝑛), 𝑝(𝑛).
These values are discretized by evaluating them at points on a staggered grid (see
Fig. 2.1). This grid is indexed by 𝑖 in the x-direction and 𝑗 in the y-direction. It is
important to note the variables 𝑢, 𝑣 represent the current velocity of the fluid within
each grid space, not the velocity of the grid cells themselves. The grid does not move
at any point during the simulation.

j-1

j

j+1

i-1 i i+1 i+2

𝑝𝑖, 𝑗 𝑝𝑖+1, 𝑗

𝑢𝑖−1, 𝑗 𝑢𝑖, 𝑗 𝑢𝑖+1, 𝑗

𝑣𝑖, 𝑗 𝑣𝑖+1, 𝑗

𝑣𝑖, 𝑗−1 𝑣𝑖+1, 𝑗−1

Figure 2.1: Discretization points for each variable on the staggered grid[29]

Each of the variables is located at a different position on the grid cell. Horizontal
velocity 𝑢𝑖, 𝑗 is at the midpoint of the right cell edge, vertical velocity 𝑣𝑖, 𝑗 is at the
midpoint of the top cell edge, and pressure 𝑝𝑖, 𝑗 is at the midpoint of the cell. This
is used to solve odd-even decoupling[30]: for a fluid at rest (i.e. 𝑢 = 𝑣 = 0) the
continuous solution is that the pressure 𝑝 is a constant across the grid. However
were this to be discretized using central differences with all variables in the same
locations, it would also be possible for a checkerboard of pressure values to form,
and for oscillation to take place[29]. This is prevented by staggering the variables.
[58] shows that this is also preventable through colocated grids, where a single grid
is used for all variables and the velocities of each side of the cell are found using
interpolation. These cell sides are implicitly staggered relative to the pressure and so
avoid this problem.

To allow for derivatives to be accurately calculated for cells on the edges of the
grid, boundary cells are added around each grid.The cells on the edges of any obstacles
in the simulation are also marked as boundary squares. For a finite domain of size
(𝑖𝑚𝑎𝑥, 𝑗𝑚𝑎𝑥) this leads to a final grid size of (𝑖𝑚𝑎𝑥 + 2) by (𝑗𝑚𝑎𝑥 + 2), where valid
fluid values fall in the ranges 𝑖 ∈ {1..𝑖𝑚𝑎𝑥}, 𝑗 ∈ {1.. 𝑗𝑚𝑎𝑥}.

The physical dimensions of each grid space are represented by 𝛿𝑥 , 𝛿𝑦. This allows
the derivatives of 𝑢 and 𝑣 to be calculated by finding the centered differences.[

𝜕𝑢

𝜕𝑥

]
𝑖, 𝑗

:=
𝑢𝑖, 𝑗 − 𝑢𝑖−1, 𝑗

𝛿𝑥
,

[
𝜕𝑣

𝜕𝑦

]
𝑖, 𝑗

:=
𝑣𝑖, 𝑗 − 𝑣𝑖, 𝑗−1

𝛿𝑦
(2.3)

The partial derivatives for pressure 𝜕𝑝/𝜕𝑥, 𝜕𝑝/𝜕𝑦 are found in the same way. The re-
maining derivatives, including second derivatives and 𝜕𝑢𝑣/𝜕𝑥, 𝜕𝑢𝑣/𝜕𝑦, can also be dis-
cretized by taking the difference across midpoints of their respective dimensions[50].

5

148

2.1.2 Timestep Calculation

Each simulation tick simulates a discrete amount of time known as a timestep 𝛿𝑡 . This
timestep is not a fixed value, and typically one would want to select as large a timestep
as possible. However, there are constraints on it’s maximum value which depend on
the simulation state.

As the derivatives are calculated between adjacent grid points, it is impossible
to accurately simulate a timestep where fluid moves between non-adjacent grid cells
. To prevent this the timestep 𝛿𝑡 is calculated from the fluid velocities to make it
impossible.

𝛿𝑡 = 𝜏 ∗min
(
𝑅𝑒

2

(
1

𝛿𝑥2
+

1

𝛿𝑦2

)−1
,

𝛿𝑥

|𝑢𝑚𝑎𝑥 |
,

𝛿𝑦

|𝑣𝑚𝑎𝑥 |

)
(2.4)

Because the new velocities calculated in this tick may be larger than 𝑢𝑚𝑎𝑥 and
𝑣𝑚𝑎𝑥 , the safety factor 𝜏 ∈ [0, 1] is used to ensure the timestep is large enough to
account for it[68].

2.1.3 Tentative Velocity

The final values of 𝑢 and 𝑣 are defined as

𝑢(𝑛+1) = 𝑢(𝑛) + 𝛿𝑡

[
1

𝑅𝑒

(
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

)
− 𝜕(𝑢2)

𝜕𝑥
− 𝜕(𝑢𝑣)

𝜕𝑦
+ 𝑔𝑥 − 𝜕𝑝

𝜕𝑥

]
𝑣(𝑛+1) = 𝑣(𝑛) + 𝛿𝑡

[
1

𝑅𝑒

(
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2

)
− 𝜕(𝑢𝑣)

𝜕𝑥
− 𝜕(𝑣2)

𝜕𝑦
+ 𝑔𝑦 −

𝜕𝑝

𝜕𝑦

] (2.5)

However, as these depend on the partial derivatives of 𝑝 , which itself depends on
velocity, they cannot be solved analytically. In order to iteratively find 𝑝 the variables
𝑓 and 𝑔, for horizontal and vertical “tentative velocity”, are introduced.

𝑓 (𝑛) := 𝑢(𝑛) + 𝛿𝑡

[
1

𝑅𝑒

(
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

)
− 𝜕(𝑢2)

𝜕𝑥
− 𝜕(𝑢𝑣)

𝜕𝑦
+ 𝑔𝑥

]
𝑔(𝑛) := 𝑣(𝑛) + 𝛿𝑡

[
1

𝑅𝑒

(
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2

)
− 𝜕(𝑢𝑣)

𝜕𝑥
− 𝜕(𝑣2)

𝜕𝑦
+ 𝑔𝑦

] (2.6)

𝑢(𝑛+1) = 𝑓 (𝑛) − 𝛿𝑡
𝜕𝑝(𝑛+1)

𝜕𝑥

𝑣(𝑛+1) = 𝑔(𝑛) − 𝛿𝑡
𝜕𝑝(𝑛+1)

𝜕𝑦

(2.7)

2.1.4 Solving the Poisson Equation with SOR

For continuity to be achieved, the final velocity values must fulfil the continuity equa-
tion (Eq. (2.2)), the time discretization of which is shown below:

𝜕𝑢(𝑛+1)

𝜕𝑥
+

𝜕𝑣(𝑛+1)

𝜕𝑦
= 0 (2.8)

This means that the total amount of fluid entering a cell in tick 𝑛 + 1 is equal to the
amount of fluid leaving, which must be the case otherwise the amount of fluid per cell

6

149

wouldn’t be constant and the fluid would be compressed.
Substituting the formulae in Eq. (2.7) into this relation and rearranging gives

𝜕2𝑝(𝑛+1)

𝜕𝑥2
+

𝜕2𝑝(𝑛+1)

𝜕𝑦2
=

1

𝛿𝑡
©«
𝜕𝑓

(𝑛)
𝑖, 𝑗

𝜕𝑥
+

𝜕𝑔
(𝑛)
𝑖, 𝑗

𝜕𝑦
ª®¬ (2.9)

The right hand side of this equation is constant for timestep 𝑛, so can be precalculated
and assigned to its own variable 𝑟ℎ𝑠 .

𝑟ℎ𝑠𝑖, 𝑗 :=
1

𝛿𝑡
©«
𝜕𝑓

(𝑛)
𝑖, 𝑗

𝜕𝑥
+

𝜕𝑔
(𝑛)
𝑖, 𝑗

𝜕𝑦
ª®¬ (2.10)

𝜕2𝑝(𝑛+1)

𝜕𝑥2
+

𝜕2𝑝(𝑛+1)

𝜕𝑦2
= 𝑟ℎ𝑠𝑖, 𝑗 (2.11)

Discretizing this gives

𝑝
(𝑛+1)
𝑖+1, 𝑗 − 2𝑝

(𝑛+1)
𝑖, 𝑗 + 𝑝

(𝑛+1)
𝑖−1, 𝑗

(𝛿𝑥)2
+

𝑝
(𝑛+1)
𝑖, 𝑗+1 − 2𝑝

(𝑛+1)
𝑖, 𝑗 + 𝑝

(𝑛+1)
𝑖, 𝑗−1

(𝛿𝑦)2
= 𝑟ℎ𝑠𝑖, 𝑗 (2.12)

and taking the simplest boundary conditions[29]

𝑝0, 𝑗 = 𝑝1, 𝑗 , 𝑝𝑖𝑚𝑎𝑥+1, 𝑗 = 𝑝𝑖𝑚𝑎𝑥 , 𝑗 𝑗 ∈ {1.. 𝑗𝑚𝑎𝑥 } (2.13)
𝑝𝑖,0 = 𝑝𝑖,1, 𝑝𝑖, 𝑗𝑚𝑎𝑥+1

= 𝑝𝑖, 𝑗𝑚𝑎𝑥 𝑖 ∈ {1..𝑖𝑚𝑎𝑥 } (2.14)
𝑓0, 𝑗 = 𝑢0, 𝑗 , 𝑓𝑖𝑚𝑎𝑥 , 𝑗 = 𝑢𝑖𝑚𝑎𝑥 , 𝑗 𝑗 ∈ {1.. 𝑗𝑚𝑎𝑥 } (2.15)
𝑔𝑖,0 = 𝑣𝑖,0, 𝑔𝑖, 𝑗𝑚𝑎𝑥 = 𝑣𝑖, 𝑗𝑚𝑎𝑥 𝑖 ∈ {1..𝑖𝑚𝑎𝑥 } (2.16)

resolves the equation to:

𝜖𝐸𝑖,𝑗 (𝑝
(𝑛+1)
𝑖+1, 𝑗 − 𝑝

(𝑛+1)
𝑖, 𝑗) − 𝜖𝑊𝑖,𝑗 (𝑝

(𝑛+1)
𝑖, 𝑗 − 𝑝

(𝑛+1)
𝑖−1, 𝑗)

(𝛿𝑥)2

+
𝜖𝑁𝑖,𝑗 (𝑝

(𝑛+1)
𝑖, 𝑗+1 − 𝑝

(𝑛+1)
𝑖, 𝑗) − 𝜖𝑆𝑖,𝑗 (𝑝

(𝑛+1)
𝑖, 𝑗 − 𝑝

(𝑛+1)
𝑖, 𝑗−1)

(𝛿𝑦)2

= 𝑟ℎ𝑠𝑖, 𝑗 (2.17)

where 𝜖 {𝑁,𝑆,𝐸,𝑊 }
𝑖, 𝑗 represents the boundary squares (shown here for North, but it ex-

tends to the other directions)

𝜖𝑁𝑖,𝑗 =

{
0 The square directly above 𝑖, 𝑗 is a boundary
1 The square directly above 𝑖, 𝑗 is not a boundary

(2.18)

Over the whole grid, this results in a linear system of equations over the inputs
𝑝𝑖, 𝑗∀𝑖 ∈ {1..𝑖𝑚𝑎𝑥 }, 𝑗 ∈ {1.. 𝑗𝑚𝑎𝑥 }. These can be decoupled by partitioning 𝑝 into red
and black squares by a checkerboard pattern (see Fig. 2.2). As each individual cell
only depends on the adjacent values, iterations of Successive Over-Relaxation (SOR)

7

150

𝒑 𝒊,𝒋+1

𝒑 𝒊,𝒋

𝒑 𝒊+1,𝒋+1

𝒑 𝒊+1,𝒋

Figure 2.2: Example checkerboard pattern used for red/black splitting.

can be performed on red and black in turn to reach a final value1[73]:

𝛽𝑖, 𝑗 :=
𝜔(

𝜖𝐸𝑖,𝑗+𝜖𝑊𝑖,𝑗
(𝛿𝑥)2 +

𝜖𝑁𝑖,𝑗+𝜖𝑆𝑖,𝑗
(𝛿𝑦)2

) (2.19)

𝑝𝑖𝑡+1
𝑖, 𝑗 := (1 − 𝜔)𝑝𝑖𝑡𝑖, 𝑗+

𝛽𝑖, 𝑗 ∗
(
𝜖𝐸𝑖,𝑗𝑝

𝑖𝑡
𝑖+1, 𝑗 + 𝜖𝑊𝑖,𝑗 𝑝

𝑖𝑡
𝑖−1, 𝑗

(𝛿𝑥)2
+

𝜖𝑁𝑖,𝑗𝑝
𝑖𝑡
𝑖, 𝑗+1 + 𝜖𝑊𝑖,𝑗 𝑝

𝑖𝑡
𝑖, 𝑗−1

(𝛿𝑦)2
− 𝑟ℎ𝑠𝑖, 𝑗

)
(2.20)

These iterations are continued until the L2 norm[42] of the residuals (the differ-
ence between the left-hand side as calculated and the expected right-hand side of
Eq. (2.20) for each cell) falls below a specific tolerance2[29].

2.1.5 Final Velocity Calculations

Once the final values of 𝑝 have been calculated the velocity values 𝑢, 𝑣 can be found
with Eq. (2.7). The boundary conditions for velocity must then be applied. There are
four relevant types of boundary condition3, which are applied depending on the type
of boundary.

1. No-Slip condition - no fluid penetrates the boundary, and fluid does not move
past it i.e. the boundary applies friction.

2. Free-Slip condition - fluid may not penetrate the boundary, but no friction is
applied. Only tangential velocity is preserved for adjacent fluids.

3. Inflow - fluid is flowing in constantly, so the velocity is set to a constant value.

4. Outflow - velocity perpendicular to the surface is preserved and fluids may flow
out.

1This could equally be done without partitioning 𝑝 , but the partitioning splits the SOR into separate
phases which can then be parallelized. Normal SOR cannot be parallelized[2].

2In the ACA coursework this tolerance was relative to the L2 norm of 𝑝 , although this was not directly
specified by the book.

3The book specifies five, including a Periodic Boundary Condition, which the ACA system does not
support.

8

151

2.2 Optimization
Optimizing simulations is important in all cases, even those that are not real-time, as
it allows the engineers using the software to iterate faster on their designs. When the
extra constraint of real-time speeds is added, it becomes even more important. This
research is mostly complete, although more can be done if the simulation needs to get
even faster.

2.2.1 Background

One of the first papers on optimizing a CFD simulation was released in 1995[40]. This
paper considered the effect of automatic compiler parallelization and optimization of
a full CFD program, and the steps a programmer must take to guide the compiler
i.e. avoiding false sharing. The program was only executed on the CPU, as General
Purpose GPU computing (GPGPU) had not yet taken hold.

GPGPU was first used for CFD simulations in 2004 with this paper[20]. This used
the “fragment shading” stage of the GPU rendering pipeline to perform the compu-
tation, as standalone “compute” pipelines were only exposed by APIs from 2007 on-
wards. Such APIs include CUDA (2007)[56], OpenCL (2008)[67], DirectX’s Direct-
Compute (2009)[49], and OpenGL 4’s compute shaders (2012)[60].

Since 2007, using GPGPU for CFD has become a large topic of study, as investig-
ated in detail by [51]. While the concept of accelerating a fluid simulation on the GPU
is not new, much of the novelty of our optimizations will stem from the interaction
between the simulation and the other systems at work. As an example, if the simu-
lation were to be modifiable with user input, introducing this new data and updating
the boundary conditions in an efficient manner becomes a new problem.

2.2.2 Previous Work

As work on CFD progressed some optimizations were developed that change the sim-
ulation pipeline and provide an overall speedup. Some of these were adapted into my
ACA coursework submission[64], which this project is based on, and carry over into
the CUDA version.

Given the definition of 𝛽 in Eq. (2.19), the value of 𝛽𝑖, 𝑗 does not change over the
course of the simulation and so can be precalculated before the simulation starts.
Additionally if it can be guaranteed that for every boundary square 𝑝 = 0, which
can be done either by never updating their pressure values or by updating them with
𝛽𝑖, 𝑗 = 0, then 𝜖𝑖, 𝑗 doesn’t need to be evaluated during the simulation at all. These
optimizations increased the runtime speed of the Poisson evaluation by 2.24x4, and
they have been kept in the CUDA program.

The book states an alternate solution where 𝜖 is set to 1 at all times and pressure
values on boundaries are copied from adjacent fluid squares[29]. This apparently stops
noncontinuous starting velocities from producing nonphysical pressure values.

As stated in Section 2.1.4, red/black SOR is used to iteratively solve the Poisson
equation. In the initial ACA coursework the values (𝑓 , 𝑔, 𝑝 , 𝑟ℎ𝑠) for red and black
data were stored in the same arrays. This was problematic as data of the same color
was never contiguous, and any iteration looking for just red values would get a cache

4The 𝛽 precalculation increased speed by 1.4x, and the removal of 𝜖 increased speed by 1.6x.[64]

9

152

line with both colors, leading to half of each cache line being wasted. To fix this, red
and black data is split into separate arrays before starting the Poisson solver. This has
been carried over into the CUDA implementation.

TheACA solution usedOpenMP[57] to automatically parallelize the Poisson solver
(and other program elements) by column. That is, each thread was given a group of
columns to process. This was not needed in the CUDA version as each GPU kernel is
implicitly parallelized over many GPU threads.

The ACA solution included optimizations exploiting properties of the original
code, such as floating point precision, to speed up calculationswhile producing identical
results. These optimizations include using fused multiply-add[47] in some places (but
not all), precalculating divisions with double-precision floats, and skipping the resid-
ual calculation phase altogether. As this project is focused on improving upon the
accuracy of the ACA submission, instead of producing bit-identical results, these op-
timizations have generally not been implemented into the CUDA program.5

2.2.3 Future Work

Along with the items mentioned in the previous section, there are some optimizations
planned to be implemented over the Christmas break and during Term 2.

CUDA devices are split into many threads, which are split into groups of 32 that
are executed concurrently as a warp[56]. If the threads in a warp attempt to access
multiple words in the same cache line, the access is coalesced[55] and only one cache
line needs to be fetched for the warp to continue. Otherwise if the accesses all touch
different cache lines, every cache line needs to be fetched before execution can con-
tinue for any of the threads. The CUDA program attempts to arrange the threads such
that they coalesce accesses, but it has not been verified to work yet.

The CUDA C Programming Guide[54] states that read-only memory can be read
into a special data cache using the __ldg() intrinsic. The compiler may insert this
automatically when it detects that data must be read-only. The use of const and
__restrict__ qualifiers on pointers that are read-only is encouraged to make read-
only data obvious. In [17] it was found that introducing these qualifiers where pos-
sible led to large speedups in pointer heavy applications, and while our case may not
use many pointers this should still be implemented wherever possible. In the CUDA
implementation templates for input and output matrices are used that include these
qualifiers automatically, and all kernels are assumed to restrict all pointer arguments.
However it has yet to be verified that __ldg() is inserted in the correct places, which
should be done in the future.

The ACA solution used Intel AVX and SSE instructions[34] to calculate four Pois-
son values at once6. Each CUDA core of a GPU has access to four-element vectors
without any extensions, so this vectorization can be extended per CUDA core. This
has not been implemented in the CUDAprogram, but is a future extension to test. This
may or may not actually speed up computation, as the memory bandwidth would be
quadrupled and the computation is already excessively parallel.

Calculating the simulation timestep and calculating the residual for a Poisson it-
eration both require a reduction over large blocks of data. Highly parallel GPU op-
timizations have already been studied extensively, so it should be trivial to implement

5The CUDA program still lacks a residual phase, but this is planned to be implemented later.
6Vectors of eight were tried but were found to be slower than four.

10

153

a very fast generic reduction kernel. In [31] seven kernels are described, in ascending
order of speed. Currently the CUDA program uses the second kernel model, and this
is planned to be moved up to the seventh kernel in the future.

2.3 Visualization
For the engineers and scientists developing simulations, it is important for a visualiz-
ation to be completely accurate and show the data in as much detail as possible. How-
ever there are other groups that may not have as deep of an understanding, but whose
actions and decisions should still be informed by the simulation results. Currently the
research is focused on learning lessons from the ACA coursework’s provided visual-
ization. For a visualization to cater to these groups well further research in this space
is required.

2.3.1 Background

One of the earliest CFD interactive visualizations was in 2002, which had a simula-
tion running slower than real time on a separate computer to the real-time visualiz-
ation[39]. Decoupling the simulation speed from the visualization speed allowed for
high framerates to be achieved for the user interface, however any changes made from
the user interface had a delay of 0.5 seconds before being reflected in the simulation.

Many scientific visualizations of fluid flow exist already. To name two examples,
streak lines and fluid colors are used for visualizing fluid flow[6]. These methods
are perfectly fine for those who understand what these elements mean, i.e. what the
colors represent, and what the optimal airflow would look like. However, for those
unfamiliar with the simulation these methods can be difficult to understand.

This project aims to develop new visualization techniques for two-dimensional
simulations that are more intuitive than the current offerings, that can be extended to
three dimensions easily. Using high-speed rendering APIs like Vulkan[72] will allow
these visualizations to be made even more complex while maintaining high speeds.
Furthermore, our approach may allow for slight inaccuracies to be introduced for the
sake of intuitivity, which has not been explored in research to the author’s knowledge.

2.3.2 Previous Work

The original coursework[9] provided a simple image visualizer for a simulation state,
which evaluated one of two quantities over the grid and produced a .ppm image with
the result. These quantities were Vorticity (𝜁), the strength of vortical (a.k.a. rota-
tional) motion at each point in the grid; and Stream Function (𝜓), the contours of
which define streamlines. Streamlines are lines that are parallel to the velocity vector
at each point, allowing the long-term flow of particles to be represented with a single
line, and thus in a static image.[48]The quantities are defined by Eqs. (2.21) and (2.22),
as specified in [29]. Examples of these modes are shown in Fig. 2.3.

𝜁 (𝑥,𝑦) :=
𝛿𝑢

𝛿𝑦
− 𝛿𝑣

𝛿𝑥
(2.21)

𝛿𝜓(𝑥,𝑦)

𝛿𝑥
:= −𝑣, 𝛿𝜓(𝑥,𝑦)

𝛿𝑦
:= 𝑢 (2.22)

11

154

(a) Vorticity 𝜁

(b) Stream Function𝜓

(c) Pressure 𝑝

Figure 2.3: Examples of the three outputs available from the ACA visualizer, all visu-
alizing the same state.

The vorticity image in Fig. 2.3a competently shows which areas of the grid contain
particle movement. However near the edges of the obstacle circle (shown in green)
the edges are black, implying no movement or rotation, which is incorrect and also a
distracting artifact for the viewer. These are due to the imprecise nature of the original
code, which only uses the differences to the East and South to find 𝜁 . This breaks down
when the squares in these directions are boundaries, and the program defaults to zero.
A better solution would be to take the central difference whenever possible, and to
fall back to using only one side when adjacent to an boundaries. This would mean the
only points where this breaks down are where a square is surrounded by boundaries
on opposite sides, which is much less likely and would also likely break other areas
of the simulation.

The Stream Function visualization (Fig. 2.3b) is nearly impossible to visually parse,
which makes sense as the velocity information is encoded in the differences between
adjacent squares and not directly in the colors. The Stream Function is not intended
to be directly visualized, but instead used to find streamlines which can be visualized
directly.

During program development a third mode was added which directly visualized
the pressure values to aid in debugging, but this was not a very useful visualization as
seen in Fig. 2.3c. Pressure is only ever referenced in the Navier-Stokes equation (and
subsequently the algorithm) as a relative value. However, the simulation in practice
ends up increasing all cells by a small amount each iteration. This overall increase in
pressure values is ignored by the simulation, but the visualization doesn’t adjust for
it. In this example, the pressure values have all increased so even the lowest pressure
value is a mid-gray. If the program simulated for too long, the pressure values would
become too high and the visualization would be entirely white. This pressure mode

12

155

has been carried over to the CUDA program as a placeholder visualization, but will
be replaced.

2.3.3 Future Work

While a purely image-based approach to visualizing properties can be useful, other
approaches allow for i.e. multidimensional quantities such as velocity to be expressed
much more easily. In the case of velocity, vector fields and particle tracing are both
shown in [29] to be effective.

Given that our simulation is realtime, we can also add changes over time to the
mix. Tracing particle paths and rendering them as a line could be replaced by actu-
ally watching the particles move over time. Particle movement could also be enhanced
with extra behaviour similar to that of BOIDs[59], which among other things imple-
ment Collision Avoidance. This would prevent particles from overlapping and getting
visually lost. Vorticity/rotational movement could be visualized by adding particles to
the grid that rotate over time based on he vorticity at their location. This could allow
the vorticity to be represented in the same view as the other parts of the simulation,
instead of creating a dedicated view separate from velocity/pressure.

13

156

3 Ethical, Social, and Legal Issues
As stated in the Specification, there are (and continue to be) no ethical or social issues
with the development of this simulation and visualization. The simulation has been
derived from code provided to the students for the ACA coursework[9], which itself
is directly derived from a book[29] available at the Warwick Library[43].

During the development of the visualization, feedback may be gathered as to
which elements are most intuitive. Any such feedbackwill be restricted to the opinion
of friends and family, and as such comes under the category of “Student projects with
primarily an educational purpose”[70], so does not require ethical review. This feed-
back would be gathered according to the University guidelines[18], and any gathering
will follow the Data Protection Act 2018[16].

To ensure the work can be trusted, and to maintain professional standards, the
BCS Code of Conduct[14] has been followed. Professional standards will continue to
be maintained during development, and research performed will be effectively refer-
enced to the same high standard achieved so far.

14

157

4 Project Requirements
These basic functional and non-functional requirements define the baseline the final
result will be measured against. These are mostly unchanged from the Specification
document, and may be expanded upon in the final report as the project evolves and
more testable features are added. Requirements F5.4 to F5.6 have been added as the
Specificationwas unclear as to the speed of the visualization. Functional requirements
for visualization are intentionally not included, as an intuitive visualization can take
many forms that must be investigated further before being specified.

4.1 Functional Requirements
F1 The system must store simulation state in a file or set of files.

F2 The system must be able to load the initial state of a simulation from these
file(s).

F3 The system must be able to generate initial simulation state files.

F4 The system must be able to simulate from an initial state for a set amount of
time without visualizing.

F4.1 This mode must be able to store the final state to output file(s).

F5 The system must be able to simulate from an initial state for an indeterminate
amount of time while visualizing.

F5.1 This mode must allow the user to pause and resume the simulation.
F5.2 This mode should be able to save it’s state to output file(s) when reques-

ted.
F5.3 This mode should allow the user to manipulate the simulation state while

simulating.
F5.4 This mode should be able to run at a locked frame-rate.
F5.5 This mode should be able to run as fast as possible, without locking the

framerate.
F5.6 This mode must be able to perform at least one of Requirements F5.4

and F5.5.

F6 Both methods of simulation must be capable of using the GPU for simulating.

F7 The system must be able to compare how similar two simulation states are.

F7.1 This comparison should produce a binary SIMILAR/NOT SIMILAR ver-
dict using heuristics.

15

158

4.2 Non-Functional Requirements
NF1 The simulation must produce similar results to the original coursework when

equivalent initial state is used.

NF2 Thevisualized simulationmust run in real-time at framerates ≥ 30 FPS for some
outputs.

NF3 The visualized simulation should intuitively represent the fluid flow such that
it can be understood by someone unfamiliar with fluid simulation.

NF4 The system must be fully documented and maintainable.

NF5 The system should have a simple guide to common operations for new users
to refer to.

NF6 The system must be capable of operating on large datasets (e.g. 4096x4096
grids) without failing.

NF7 The system should be fully compilable and executable from a DCS machine
with minimal extra installations.

4.3 Hardware and Software Constraints
As this simulation uses a GPU, the developer must have one available for debugging
and testing the program. As the CUDA API is used to implement the simulation (see
Section 6.1), the program requires an NVIDIA GPU to run.

The high-speed rendering requirements of the program necessitated the use of
Vulkan over OpenGL. Vulkan gives the developer more fine control over scheduling,
and allows the hardware to take shortcuts that it may not be able to do under OpenGL.
For more on this decision see Section 6.1.

16

159

5 Design

5.1 Command-Line Interface
The compiled binary uses a command-line interface to configure and run one of many
subcommands available. These subcommands are:

• makeinput, which generates simulation input files, fulfilling Requirement F3.

• fixedtime, which runs a headless simulation for a fixed time, fulfilling Re-
quirement F4.

• compare, which compares two simulation states for equality, fulfilling Require-
ment F7.

• renderppm, which visualizes a simulation state in the same way the original
ACA coursework did.

• convert2newbinary, for converting ACA simulation state files to a potential
new format (see Section 5.3). Currently a no-op.

• run, which starts a real-time visualized simulation, fulfilling Requirement F5.

Splitting the program into subcommands was inspired by Git[23], and avoids creat-
ing separate binaries for each operation. Each subcommand can be configured with
command-line options conforming to POSIX standard[33]. Examples of using the
program are in Fig. 5.1.

1 # Create an input file based on simple_layout with a size of 1x2 metres
2 ./sim_cuda makeinput ./simple_layout.png 1 2 ./initial.bin
3
4 # Run it in headless mode for 10 seconds
5 ./sim_cuda fixedtime --backend=cuda ./fluid.json ./initial.bin 10 \
6 -o ./output_after_10.bin
7
8 # Compare it to the expected output
9 ./sim_cuda compare ./output_after_10.bin ./expected_after_10.bin
10
11 # Render it out to an image
12 ./sim_cuda renderppm ./output_after_10.bin zeta ./output_after_10.ppm
13
14 # Try visualizing it in real-time
15 ./sim_cuda run --backend=cuda ./fluid.json ./initial.bin

Figure 5.1: Example usage of the simulation program

5.2 Generating Inputs
The makeinput subcommand allows input simulation states to be generated from
image files. Each pixel of the input image represents a cell of the grid, including
padding cells7, where non-black pixels are denoted as boundary cells and are fluid cells

7This can allow the padding cells to be fluids rather than boundaries, which is incorrect. In the future
this will be changed to add padding cells once the image is parsed.

17

160

otherwise. The example in Fig. 5.2 shows an example file which creates a rectangular
obstacle, and the visualization of the generated state.

(a) Base Image

(b) Simulation

Figure 5.2: An example of converting an image to a simulation state.

Velocities and pressure in every cell are currently set to constant default values.
For velocities, this is 1m/s east, equal to the default flow of incoming fluid, which
may cause issues with correctness. An example would be a situation where fluid is
occluded from the input direction by an obstacle, but moves east anyway with no
reason to do so. This will likely be changed to zero out initial velocity, requiring some
simulation to take place before the fluid begins to move.

The exact initial value of pressure is inconsequential as the simulation only cares
about the difference between cells. This means the only significant point is that the
pressure is equal over all cells, so the system should be in equilibrium. This may be
inconsistent with the nonzero velocities mentioned above, which is another reason to
zero them out instead.

5.3 File Formats
To fulfil Requirement F1 two file formats have been defined to store simulation data
and parameters.

18

161

5.3.1 Fluid Parameters

Parameters that are characteristic of a particular fluid or simulation type are stored
in a “Fluid Parameters” file. This includes the Reynolds number, the timestep safety
factor, and the maximum iteration count for the Poisson solver. They are stored in a
JSON format to be human-readable, are reusable for different simulation states, and
can be easily edited by the end user. An example is shown in Fig. 5.3.

1 {
2 "Re": 150.0,
3 "initial_velocity_x": 1.0,
4 "initial_velocity_y": 0.0,
5 "timestep_divisor": 60,
6 "max_timestep_divisor": 480,
7 "timestep_safety": 0.5,
8 "gamma": 0.9,
9 "poisson_max_iterations": 100,
10 "poisson_error_threshold": 0.001,
11 "poisson_omega": 1.7
12 }

Figure 5.3: An example Fluid Parameters file.

5.3.2 Simulation State

Data unique to an individual state such as simulation resolution, physical size, and
velocity fields are stored in a binary format reused from the ACA project. As the data
is much more sensitive to individual modifications8, it makes more sense to store this
data in a binary format where it cannot be easily modified by a user. Additionally the
binary format is much smaller than any text-based format, which helps as the volume
of data stored is much larger than that stored in the fluid parameters.

There is no magic string at the start of the file, which may be introduced in a
new version. The header consists of a pair of unsigned 32-bit integers specifying the
resolution of the simulation, and a pair of 32-bit floating point numbers specifying the
physical dimensions of the simulation. From there, four sets of data for each column
are stored, including the boundary padding squares:

1. Horizontal Velocity 𝑢 (float32)

2. Vertical Velocity 𝑣 (float32)

3. Pressure 𝑝 (float32)

4. Cell Flags, defining which adjacent squares are boundaries (uint8)

This structure is somewhat unintuitive and error-prone, an example being the Cell
Flags which may end up being inconsistent between adjacent cells, but for the sake
of compatibility with ACA data it has been kept. In the future it may be updated to a
safer format.

8i.e. changing a single value in the velocity field can introduce discontinuities

19

162

5.4 Simulation Backends
To allow easy comparisons between CPU and GPU simulations the program contains
multiple simulation backends which can be requested when running a headless sim-
ulation9. The headless simulation uses a --backend command line option to allow
the user to choose the backend from this selection:

• Null, a backend which does no simulation for testing purposes.

• CPU Simple, equivalent to pre-optimization ACA code.

• CPU Optimized, equivalent to the submission for ACA, bit-equivalent to CPU
Simple.

• CPU Optimized Adapted, a version of CPU Optimized slightly modified to be
closer to the GPU version.

• CUDA Backend V1, the only GPU-based backend.

Currently the only modification present in the CPU Optimized Adapted backend
is the removal of double-precision floating point logic, which is not present on the
GPU for speed concerns. However once the GPU introduces residual checking for the
iterative solver, or any other major changes to the pipeline, they will be introduced
into this backend to ensure a like-for-like comparison.

5.5 Visualization Pipeline
This section details the extra code implemented in order to efficiently and effectively
visualize simulation results in real time. This is not related to the renderppm sub-
command, which uses CPU code to render a single simulation state as an image.

5.5.1 Work Scheduling

Themost important tasks are run on the GPU, and are the limiting factor for perform-
ance. This means it’s important that the GPU is running at all times. Points where
the GPU is doing no useful work are known as “bubbles”.

To avoid these bubbles a GUI thread is spawned to prepare the current frame’s
draw commands and handle user input. This runs in parallel with the simulation
thread, which dispatches CUDA kernels for the simulation tick(s). Once the sim is
finished, it waits on the GUI thread (which should always be done by this point) and
dispatches the draw commands through Vulkan. It then dispatches the GUI thread
again, waits for the render to finish and then immediately starts the next simulation.

Figure 5.4 shows the scheduling in more detail. The GUI work can execute any-
where within the dashed lines and still not delay the final draw. Note that the GPU is
always doing useful work, and there are no bubbles.

Currently it is assumed that the rendering of one frame and the simulation of the
next frame cannot happen in parallel. This is also enforced by the fact that velocity
and pressure buffers are used by both the simulation and the render, meaning that a
simulation could not update those buffers without invoking a race condition. How-
ever if the GPU has spare cores available while rendering a frame, then the simulation

9The realtime visualization currently only supports the CUDA-based backend, violating Requirement F6.

20

163

Figure 5.4: Thread utilization diagram.

could use these cores on the next simulation at the same time. Furthermore, most of
the simulation can take place without writing to the velocity and pressure buffers, so
those parts of the simulation could be run in parallel with the rendering without any
worries. Or, of course, the simulation could be double-buffered and run entirely in
parallel with the rendering.

5.5.2 Simulation Timing

As specified by Requirement F5.6 there are two acceptable modes that the visualiz-
ation can run in: Flat Out (Requirement F5.5), where the simulation runs as fast as
possible; and Locked Framerate (Requirement F5.4), where a frame-rate is selected
and the visualization only produces that many frames per second. The definition of a
flat-out speed is that if Frame 𝑁 takes some amount of real-world time 𝑡𝑁 , then the
next frame should simulate 𝑡𝑁 seconds of simulation-time before it is presented. This
way the simulation runs as fast as possible, but it could lead to situations where if the
simulation takes too long, the next simulation will have to simulate even more time
and take longer etc.

With a locked frame-rate the simulation selects a timestep 𝛿𝑡 to simulate for each
frame, and limits the speed at which frames are produced. If the frame-rate is 60
frames per second, then the visualization would potentially have to delay itself so
that each frame takes 1/60 = 16.67ms.

Currently the visualization does not take either of these approaches, but simulates
a fixed 𝛿𝑡 = 1/60 without limiting the frame-rate. This means on the researcher’s

21

164

current setup, which has a monitor capable of showing 120fps, the visualization runs
120 ticks per second which results in a simulation that’s 2x faster than real-time. This
shows the simulation is fast, which is promising, but it fails the requirements.

5.6 Comparison Heuristics
In the comparison subcommand heuristics are used to judge if one simulation is accur-
ate and precise with respect to the other. This does not quite fulfil Requirement F7.1,
as there are two results and two heuristics used instead of just one. To fix this, it is
planned that the comparison will produce SIMILAR if the simulations are both accur-
ate and precise, and NOT SIMILAR otherwise. The program may then provide addi-
tional information to help the user determine the cause of the problem.

This assumes one of the supplied states is a known-valid simulation state, and the
other is not. Two simulation state files are provided, and the velocity and pressure
values 𝑢, 𝑣, 𝑝 are compared separately. The simulation states must be of the same
resolution, and should use the same boundary squares (although this is not currently
checked).

The comparison is performed by calculating the mean and standard deviation of
the square error between the datasets. These are then compared to tolerance values to
produce two binary outputs: ACCURATE if themean is below tolerance, and PRECISE
if the standard deviation is below tolerance. Examples are shown in Fig. 5.5.

The tolerance for the mean was derived from an expected error magnitude of
±10−7, which was squared to produce 10−14. It is assumed that the standard devi-
ation should always be smaller than the mean, so the tolerance for standard deviation
is also 10−14.

Velocity X:
Sq. Error Mean: 0

ACCURATE
Sq. Error Std. Dev: 0

PRECISE
Velocity Y:

Sq. Error Mean: 0
ACCURATE

Sq. Error Std. Dev: 0
PRECISE

Pressure:
Sq. Error Mean: 0

ACCURATE
Sq. Error Std. Dev: 0

PRECISE

(a) Comparison of Equal States

Velocity X:
Sq. Error Mean: 0.0233842

INACCURATE
Sq. Error Std. Dev: 0.0996487

IMPRECISE
Velocity Y:

Sq. Error Mean: 0.00566354
INACCURATE

Sq. Error Std. Dev: 0.0139529
IMPRECISE

Pressure:
Sq. Error Mean: 0.0214799

INACCURATE
Sq. Error Std. Dev: 0.0511252

IMPRECISE

(b) Comparison of Unequal States

Figure 5.5: Examples outputs from the comparison tool.

22

165

6 Implementation

6.1 Library Selection

OpenGL Vulkan
OpenCL Y N
CUDA Y Y

OpenGL Y N
Vulkan N Y

Figure 6.1: Graphics and Compute Backend Interoperability Matrix

CUDA and Vulkan had already been highlighted in the Specification as likely
choices of backends, but to be complete other backends were also considered. As
the simulation would have to run on DCS systems (Requirement NF7), and thus run
on Linux, the only possible GPU rendering backends were OpenGL and Vulkan. How-
ever there were still multiple choices of compute backend:

• OpenCL[67] is an “Open Standard for Parallel Programming of Heterogeneous
Systems”[66].

• CUDA[52] is a closed-source library for running parallel code onNVIDIAGPUs.

• OpenGL has Compute Shaders[60] which can execute computations outside of
the graphics pipeline.

• Vulkan also has Compute capability[38], similar in function to OpenGL.

To decide on the compute backend to use, an interoperability matrix was drawn
(Fig. 6.1) to show which libraries could share data without copying it between buf-
fers. As the researcher was already experienced with Vulkan, and the more granular
control it provides would be beneficial to performance, Vulkan was selected as the
rendering backend. This prevented OpenCL and OpenGL from being used as compute
backends, as they are not compatible with Vulkan. CUDA and Vulkan have compar-
able ability, but CUDA was chosen as the compute backend. The Vulkan compute
shaders are still a very graphics-oriented view of computation, and CUDAwould give
the researcher experience with other kinds of libraries. A Vulkan compute backend
may still be used for the visualization portion of the code.

In other cases there were clear choices: the SDL2[62] window and input library
and the Dear ImGUI[15] UI library were chosen due to personal experience. The
stb_image.h header was found to be a simple method of importing image color data
as byte arrays, used for the input generator (Requirement F3).

There are a great many options for Command-Line parsing libraries, even more so
because C++ is used instead of C. A recent survey of the possibilities[5] was whittled
down to five options.

getopt[22], argp[25], and gopt[71] are C libraries that use arrays of structures
to define the required arguments. Of them, only argp can automatically generate a
--help argument, which is a very valuable feature.

cxxopts[36] was considered as a C++ alternative, but used very odd syntax for
defining arguments. Ultimately CLI11[11] was chosen as a modern C++11 library

23

166

that had native support for subcommands, which were used heavily for separating
program components (see Section 5.1).

6.2 Build System
Thebuild system is implemented in CMake[13] as specified in Section 7.3. This section
highlights a few changes that were made to an otherwise standard setup to accom-
modate the project.

6.2.1 CUDA-less Binaries

The project can be built to produce both CUDA and CUDA-less binaries, in case it
needs to be run on CUDA-less computers. The list of regular C++ source files and
CUDA source files are maintained separately. A CUDA-less binary (sim_nocuda)
will only build the C++ files while a CUDA binary (sim_cuda) will build both. When
building the sim_cuda target the preprocessormacro CUDA_ENABLED is defined through-
out all source files, including the C++ files. This allows support for CUDA backends
in C++ code (i.e. as selectable options on the command-line) to be conditionally en-
abled without maintaining two copies of the relevant source files. In Fig. 6.2 (which
has been amended for brevity), the switch statement only contains a case for CUDA
if the directive is set, triggering a fatal error otherwise.

1 switch(backendType) {
2 case Null:
3 return SimFixedTimeRunner <NullSimulation , Host2DAllocator >();
4 case CpuSimple:
5 return SimFixedTimeRunner <CpuSimpleSimBackend , Host2DAllocator >();
6 case CpuOptimized:
7 return SimFixedTimeRunner <CpuOptimizedSimBackend , Host2DAllocator >();
8 case CpuAdapted:
9 return SimFixedTimeRunner <CpuOptimizedAdaptedSimBackend , Host2DAllocator >();
10 #if CUDA_ENABLED
11 case CUDA:
12 return SimFixedTimeRunner <CudaBackendV1 <true>, CudaUnified2DAllocator >();
13 #endif
14 default:
15 FATAL_ERROR("Enum val %d doesn't have an ISimFixedTimeRunner!\n", backendType);
16 }

Figure 6.2: An example of conditionally supporting CUDA based on a preprocessor
directive.

6.2.2 Shader Build Infrastructure

The shaders used for visualization are written in GLSL, with appropriate extensions
to be compatible with Vulkan. They are separated by file type, with Vertex shaders
in .vert files and Fragment shaders in .frag files. As Vulkan does not natively
support GLSL, they must be compiled to SPIR-V before they can be used. CMake does
not support GLSL as a first-class language, so a custom build command was used to
compile them with glslc[28] when they change. This allows them to be treated just
like any other source file from the programmer’s perspective. The SPIR-V files are

24

167

placed in a shaders directory next to the binaries, where they can be easily accessed
and passed to Vulkan.

6.3 Memory Usage
The CUDA simulation backend makes use of CUDA Unified Memory[32] whenever
possible. This allows the memory to be accessed from the CPU and the GPU without
having tomanuallymap it, and instead pages thememory between devices on request.
Once the pages are on the GPU, it can be accessed with the same speed as manually
allocated GPU memory. The main benefit of this is that any functionality that has not
yet been implemented on the GPU, or that may be faulty, can be easily replaced with
pre-existing CPU code to verify the simulation correctness. Moving memory between
the CPU & GPU does decrease performance, as any memory movement would, but as
it is only intended for development this is OK.

Memory that needs to be shared between CUDA and Vulkan is allocated through
Vulkan and then mapped to a CUDA pointer via the VK_KHR_external_memory_fd
Vulkan extension[37] and the CUDA External Memory API[53]. It is possible for
memory to be imported from CUDA into Vulkan, but allocating through Vulkan gives
more control over where memory is allocated. Because of the limited flexibility of
Vulkan-controlled memory compared to Unified Memory, this is used sparingly and
only for data that absolutely must be shared between the APIs.

Vulkan memory is only used when Vulkan is present i.e. during the real-time
visualization. In the headless mode, all of the memory is CUDA Unified Memory.
This could lead to problems if the simulation assumes memory is Unified and CPU-
accessible when it would be Vulkan memory during the visualization. In this case the
codewould break only during the real-time visualizationwhen the pointer is accessed,
and not during the headless simulation. To avoid this, a templated smart-pointer
class CUDAUnified2DArray<class T, bool IsUnified> is used for each pointer
to CUDA-usable memory. This automatically frees the memory when possible, and
provides as_gpu() and as_cpu() functionswhich the programmer uses to access the
data. C++ static_assert and if constexpr logic is used to create a compilation
error when non-Unified memory is accessed through as_cpu(), preventing the issue
from ever occurring.

TheCUDA backend itself is also templated onwhether it is being runwith Vulkan-
exported memory. This allows simulation code to detect whether the memory would
be CPU-accessible or not, and take action accordingly. In Fig. 6.3, this is used to
conditionally copy data into a Unified Memory buffer so that it can be used with a
part of the algorithm that has not yet been implemented on the GPU. If the memory
is already Unified, the copy is skipped, but if the memory is Vulkan-based the copy
is performed to prevent a SEGFAULT. This logic uses if constexpr, so all branches
are eliminated at compile-time adding a very slight performance boost.

6.4 Current Status
The makeinput, compare, and renderppm subcommands are all functional. More
functionalitymay be added if necessary for efficient development, and potential changes
have been outlined in the previous sections.

25

168

1 if constexpr (UnifiedMemoryForExport) {
2 // The buffer is Unified Memory, so use it directly
3 OriginalOptimized::splitToRedBlack(p.joined.as_cpu(),
4 p_buffered.red.as_cpu(),
5 p_buffered.black.as_cpu(),
6 imax, jmax);
7 } else {
8 // The buffer is not unified memory,
9 // so create a new Unified memory buffer and copy the data in,
10 // then use that instead.
11 CudaUnified2DArray <float, true> p_unified(unifiedAlloc.get(),

matrix_size);
12 p_unified.memcpy_in(p.joined);
13 OriginalOptimized::splitToRedBlack(p_unified.as_cpu(),
14 p_buffered.red.as_cpu(),
15 p_buffered.black.as_cpu(),
16 imax, jmax);
17 }

Figure 6.3: An example of conditionally changing code based on memory type.

The fixedtime headless simulation is functional, with each backend performing
as intended. More optimization is intended (Section 2.2), but the current program is
fast enough to simulate the original ACA input at 120 ticks per second10 which is a
good baseline.

Figure 6.4: An example of the real-time visualization running on the ACA input.

The visualized simulation creates a 1280x720 window and displays the simulation
in a subwindow, which the user canmove around. The visualization is a simple display
of the current pressure values, which is subpar (see Section 2.3.2), but this is planned
to change. A second window displays statistics about the last frame, and shows a
checkboxwhich controls if the simulation is running as per Requirement F5.1. As seen

10On the researcher’s GTX 1080. The program hasn’t been tested on other systems.

26

169

in this window, the simulation is running at 120 frames per second. Each simulation
tick is 1/60th of a second of simulation time, so the simulation is running at 2x real
time. This will be changed to account for Requirement F5.6.

27

170

7 Project Management

7.1 Software Development Methodology
Plan-driven solutions depend on a rigid specification being completed before develop-
ment[3], which does not fit with the more abstract goals of the visualization portion.
Additionally some of themain advantages of plan-driven approaches only applywhen
introducing new team members and handling large teams. Neither scenario applies
here, as only one person is undertaking active development.

For these reasons, anAgile approachwas takenwith a development cycle complet-
ing every two weeks. The goals for each development cycle were documented using
Trello[69]. It was planned that the supervisor would be contacted every week with
the current status of the project and the progress made in the current cycle. These
contacts would either take place over e-mail if there were no pressing questions to
ask, and otherwise take place on Microsoft Teams[46]. Unfortunately for the first
few weeks this did not happen, as other work was vying for attention and preventing
project work from taking place. This has been resolved in Week 5, and there is now
frequent email correspondence.

7.2 Project Timeline
The project was split into multiple tasks to schedule it effectively. These tasks are
scheduled on both a GanttChart in Fig. 7.1, and as a table in Table 7.1. The timeline has
been well followed, and this schedule has been left unchanged from the Specification.
Note that over the Christmas break no work is scheduled, this is to allow time on the
other courseworks the researcher will have due over that period.

Also note that the development of the visualization and optimization of the simu-
lation are scheduled concurrently - this is to account for the fact that some strides in
visualization may require extra optimizations to run in real-time. Both of these blocks
end on Week 22, where development is then completely focused on the presentation.

Figure 7.1: Project Schedule as a Gantt Chart

28

171

Task Start Week End Week
Spec 1 3
CFD Research 3 12
Initial Simulation Porting 3 5
Basic Visualization 5 9
Progress Report 6 9
Visualization Research 12 18
Visualization Development 15 22
Simulation Optimization 15 22
Presentation 22 24
Final Report 9 32

Table 7.1: Project Schedule Tasks

7.3 Tools
gcc 9+[26] is used to compile the program. This version has stable support for the
C++14 and C++17 standards[8], allowing modern techniques to be used in the pro-
gram. CMake[13] is used to handle building the program source files. Versions 3.8
and up support CUDA as a first-class language[44], which simplifies the compilation
process. The CLion IDE[10] is used on the researcher’s personal machine, as the re-
searcher is familiar with the other IDEs in this family. If DCSmachines are used, GNU
Emacs[27] will be used to edit files instead.

Git[23] is used for source control, synchronized to a private GitHub[24] repository
to avoid data loss. LATEX[41] is used to create the various reports and non-program
deliverables required by the project, which are hosted on Overleaf[1] so they can be
accessed on Windows and Linux without an installed LATEX environment.

Trello[69] is used to track bugs and upcoming features in each development cycle.
Google Drive[12] is used to host other documents, i.e. scanned notes, that have been
generated during development.

7.4 Risk Management
As the project continues, there are risks that may impede progress and even prevent
the project from succeeding. Being aware of these risks allows them to be predicted
ahead of time, avoided, or in the worst case mitigated once they arrive. Risk can
be calculated with the following equation, where Severity and Likelihood are graded
between 1 and 5.

𝑅𝑖𝑠𝑘 = 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ∗ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

Some of these risks have been encountered, including a new risk (Other Pressures)
which was not accounted for in the Specification. Thankfully this risk did not cause
a large delay.

7.4.1 Misscheduling

It is possible that the features outlined in Section 4 are too great to be implemented
in the allotted time. In that case, the quality of work may have to be reduced to meet

29

172

deadlines, or the schedule may need to be changed. This is especially relevant to the
Visualization portion of the project, which cannot be fully scheduled yet.

Risk = 2 * 2 = 4
Avoidance: Previous projects should be used as a yardstick to predict how long

implementing features will take, and inform the schedule. As new Visualization fea-
tures are discussed, the impact on timing they each have should be considered.

Contingency: The scope of the project could be reduced to allow the report to
be completed in time. A “code freeze” will be implemented close to the presentation
deadline to ensure enough time is spent polishing the presentation and report.

7.4.2 Other Pressures

While the project schedule may have been well estimated based on the work required
for the project, the amount of work required for other modules may be larger than
expected. This manifested in Term 1, where the researcher took more modules than
usual. Additionally, the removal of in-person lectures due to COVID-19 led to a lack
of overall structure, which made organizing the other work more difficult.

Risk = 2 * 1 = 2
Avoidance: A more balanced set of modules between Term 1 and Term 2 could

have helped resolve this, however on the other side of the coin the researcher now has
fewer modules in Term 2 so this is unlikely to happen again. Next term the researcher
will try to maintain a schedule for working on other module content, which should
make up for a lack of in-person lectures.

Contingency: As before, the scope of the project could be reduced to allow the
report to be completed in time. If module work is taking more time than expected
by week 20, the code freeze could be pulled forwards to week 20 or 21 to spend more
time on the presentation.

7.4.3 Loss of Hardware Access

As noted in Section 4.3, a GPU is required for the project to be tested and developed.
Currently, the main development environment used is the researcher’s personal com-
puter, which has a suitable GPU. However, if this computer breaks down or is stolen,
there is no readily available alternate environment. Under normal circumstances the
Department of Computer Science labs would be used instead, as they also have suit-
able GPUs, but the current virus situation prevents this.

Risk = 5 * 1 = 5
Avoidance: Not possible.
Contingency: Student insurance could be used to purchase a newGPU/computer

if it is stolen. Failing this, the DCS clusters could be used, but these will likely have
high contention from other students who need to use GPUs remotely.

7.4.4 Illness

It is always prudent to consider the possibility that the stakeholders may fall ill and
be unable to work on the project for some time. This is exacerbated by the current
situation with COVID-19, making potential illnesses more dangerous than usual.

30

173

This risk manifested during Week 7, and delayed work on the project by three
days. However the bulk of the current work had been completed by that point, and
mostly other modules were affected.

Risk = 4 * 2 = 8
Avoidance: Not possible.
Contingency: The schedule would need to be changed to account for lack of time

spent working. Some requirements may need to be reduced or removed entirely.

31

174

8 Testing
In order tomeasure the degree of success a project achieves, testingmust be performed
to verify the behaviour of the program is correct. Building tests also allows further
development of the program to easily identify when new bugs are introduced. This
section proposes potential effective tests, and documents the results of tests already
performed since they were described in the Specification.

8.1 Unit Testing
The separate phases of the simulation are effective units of code. They could be auto-
matically tested individually, or individual units could be swapped out for known
working versions in order to pinpoint bugs found in wider tests. The latter method
has been used for debugging during the simulation implementation.

The makeinput (Requirement F3), compare (Requirement F7), and renderppm
program modes can also be tested as individual units with input/expected output
combinations. These tests have not yet been implemented, but are planned as an
extension.

8.2 Integration Testing
The “headless mode” outlined in Requirement F4 has functioned as an integration test
for all of the simulation phases. Initially the CPU Simple and Optimized backends
(Section 5.4) were added and tested against the original ACA program[9] and the sub-
mitted coursework[64] using the provided testing tools. The Compare mode (Require-
ment F7) was then implemented and tested against the ACA testing tools to ensure
it’s behaviour was correct. The Optimized Adapted and CUDA backends (Section 5.4)
were then added and compared to the required output to ensure that any deviations
were small.11

While the visualization cannot be testedwithout some simulation data to visualize,
that data does not necessarily need to be continuously simulated. Static simulation
states may be created in order to test separate parts of the visualization, or multiple
parts at once.

8.3 Overall Testing
The “visualization mode” from Requirement F5 should function as a full system test
of the simulation with the visualization. Assuming the headless simulations are ac-
curate, there should be a negligible difference in results from a visualized simulation.

11Because the simulation operates on single-precision floating point numbers, small changes to orders
of operation or compiler optimizations could introduce small discrepancies at the bit level.

32

175

9 Conclusion
As planned, enough research has been done into the problem space to produce an
effectively optimized program. There has been enough time to think through the
design and implementation, and the schedule has been followed well to this point.
Testing, where implemented, has been helpful. Enough future tests have been planned
so that the final program will be robust.

The simulation program and associated state has been shown to fulfil many of
the requirements already. The visualization fulfils the base Requirement F5, but not
Requirements F5.2 to F5.6. These will be added next term. Furthermore, there are
possible program extensions listed in Appendix A.

All in all, this is a very good place to be in with respect to the schedule. The work
done here should allow plenty of time next term to be devoted to the visualization,
which should produce a very polished final program, report and presentation.

33

176

10 References
All URLs accessed on October 14th 2020 unless otherwise specified.
[1] About us - Overleaf, Online LaTeX Editor. 2020. uRl:

https://www.overleaf.com/about.
[2] L. Adams and J. Ortega. ‘A multi-color SOR method for parallel computation’.

In: ICPP. 1982, pp. 53–56.
[3] James Archbold. CS261 Software Engineering. 2020.
[4] Atomic Heritage Foundation. Computing and the Manhattan Project. uRl:

https://www.atomicheritage.org/history/computing-and-
manhattan-project.

[5] attractivechaos. A survey of argument parsing libraries in C/C++. August 2018.
uRl: https://attractivechaos.wordpress.com/2018/08/31/a-
survey-of-argument-parsing-libraries-in-c-c/.

[6] Autodesk Flow Design - A Virtual Wind Tunnel On Your Desktop. 2014. uRl:
https://www.youtube.com/watch?v=2RBOtd-Z8O8.

[7] R.B. Bird, W.E. Stewart and E.N. Lightfoot. Transport Phenomena. Transport
Phenomena v. 1. Wiley, 2006. isbn: 9780470115398.

[8] C++ Standards Support in GCC. 2020. uRl:
https://gcc.gnu.org/projects/cxx-status.html.

[9] Adam Chester and Graham Martin. CS257 Advanced Computer Architecture
Coursework. 2020.

[10] CLion: A Cross Platform IDE for C and C++. 2020. uRl:
https://www.jetbrains.com/clion/.

[11] CLIUtils. CLI11. uRl: https://github.com/CLIUtils/CLI11.
[12] Cloud Storage for Work and Home - Google Drive. 2020. uRl:

https://www.google.com/intl/en_in/drive/.
[13] CMake. 2020. uRl: https://cmake.org/.
[14] CODE OF CONDUCT FOR BCS MEMBERS. 2015. uRl:

http://www.bcs.org/upload/pdf/conduct.pdf.
[15] Omar Cornut. Dear ImGui. uRl: https://github.com/ocornut/imgui.
[16] Data Protection Act 2018, c. 12. 2018. uRl:

http://www.legislation.gov.uk/ukpga/2018/12/contents/enacted.
[17] Rokiatou Diarra. ‘Towards Automatic Restrictification of CUDA Kernel

Arguments’. In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ASE 2018. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 928–931. isbn: 9781450359375. doi:
10.1145/3238147.3241533. uRl:
https://doi.org/10.1145/3238147.3241533.

[18] Ethical Consent for Undergraduate Projects. 2020. uRl: https:
//warwick.ac.uk/fac/sci/dcs/teaching/material/cs310/ethics.

34

177

[19] G. Falkovich. Fluid Mechanics. Cambridge University Press, 2018. isbn:
9781107129566.

[20] Zhe Fan et al. ‘GPU Cluster for High Performance Computing’. In: Proceedings
of the 2004 ACM/IEEE Conference on Supercomputing. SC ’04. USA: IEEE
Computer Society, 2004, p. 47. isbn: 0769521533. doi: 10.1109/SC.2004.26.
uRl: https://doi.org/10.1109/SC.2004.26.

[21] ‘Fluid Dynamics on the Big Screen’. In: ANSYS Advantage II.2 (2008),
pp. 52–53. uRl: https://www.ansys.com/-
/media/ansys/corporate/resourcelibrary/article/aa-v2-i2-
fluid-dynamics-on-big-screen.pdf.

[22] Free Software Foundation. getopt(3): Parse options - Linux man page. uRl:
https://linux.die.net/man/3/getopt.

[23] Git. 2020. uRl: https://git-scm.com/.
[24] GitHub - About. 2020. uRl: https://github.com/about.
[25] GNU Project. Argp (The GNU C Library). uRl:

https://www.gnu.org/software/libc/manual/html_node/Argp.html.
[26] GNU Project. GCC 9 Release Series. 2020. uRl:

https://gcc.gnu.org/gcc-9/.
[27] GNU Project. GNU Emacs. 2020. uRl:

https://www.gnu.org/software/emacs/.
[28] Google LLC. shaderc. uRl:

https://github.com/google/shaderc/tree/main/glslc.
[29] Michael Griebel, Thomas Dornseifer and Tilman Neunhoeffer. Numerical

simulation in fluid dynamics: a practical introduction. SIAM, 1998.
[30] Francis H. Harlow and J. Eddie Welch. ‘Numerical Calculation of

Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface’. In:
Physics of Fluids 8.12 (1965), p. 2182. issn: 00319171. doi:
10.1063/1.1761178. uRl:
https://aip.scitation.org/doi/10.1063/1.1761178.

[31] Mark Harris. Optimizing Parallel Reduction in CUDA. Tech. rep. uRl:
https://developer.download.nvidia.com/assets/cuda/files/
reduction.pdf.

[32] Mark Harris and NVIDIA. Unified Memory for CUDA Beginners | NVIDIA
Developer Blog. June 2017. uRl: https:
//developer.nvidia.com/blog/unified-memory-cuda-beginners/.

[33] IEEE and The Open Group. ‘Utility Conventions’. In: The Open Group Base
Specifications 1.7 (2018). uRl: https://pubs.opengroup.org/
onlinepubs/9699919799/basedefs/V1_chap12.html.

[34] Intel Corporation. Introduction to Intel® Advanced Vector Extensions. uRl:
https://software.intel.com/content/www/us/en/develop/
articles/introduction-to-intel-advanced-vector-
extensions.html.

35

178

[35] Antony Jameson, Luigi Martinelli and J Vassberg. ‘Using computational fluid
dynamics for aerodynamics–a critical assessment’. In: Proceedings of ICAS.
2002, pp. 2002–1.

[36] jarro2783. cxxopts: Lightweight C++ command line option parser. uRl:
https://github.com/jarro2783/cxxopts.

[37] James Jones and Jeff Juliano. VK_KHR_external_memory_fd. The Khronos
Group Inc, 2016. uRl:
https://www.khronos.org/registry/vulkan/specs/1.2-
extensions/man/html/VK_KHR_external_memory_fd.html.

[38] Khronos. Vulkan 1.1 Reference Guide. Tech. rep. uRl:
www.khronos.org/vulkan.

[39] O Kreylos et al. ‘Interactive Visualization and Steering of CFD Simulations’.
In: Proceedings of the Symposium on Data Visualisation 2002. VISSYM ’02.
Goslar, DEU: Eurographics Association, 2002, pp. 25–34. isbn: 158113536X.

[40] M Kuba, C D Polychronopoulos and K Gallivan. ‘The Synergetic Effect of
Compiler, Architecture, and Manual Optimizations on the Performance of
CFD on Multiprocessors’. In: Supercomputing ’95:Proceedings of the 1995
ACM/IEEE Conference on Supercomputing. 1995, p. 72.

[41] LaTeX - A document preparation system. 2020. uRl:
https://www.latex-project.org/.

[42] ‘L2 norm’. In: Encyclopedia of Biometrics. Ed. by Stan Z. Li and Anil Jain.
Boston, MA: Springer US, 2009, pp. 883–883. isbn: 978-0-387-73003-5. doi:
10.1007/978-0-387-73003-5_1070. uRl:
https://doi.org/10.1007/978-0-387-73003-5_1070.

[43] Library Search. 2020. uRl: http:
//encore.lib.warwick.ac.uk/iii/encore/record/C__Rb1204273.

[44] Robert Maynard. [CMake] [ANNOUNCE] CMake 3.8.0 available for download.
2017. uRl:
https://cmake.org/pipermail/cmake/2017-April/065294.html.

[45] Medvecký-Heretik Jakub. ‘Real-time Water Simulation in Game
Environment’. PhD thesis. Masaryk University, Faculty of Informatics, 2018.

[46] Microsoft Teams | Group Chat, Team Chat & Collaboration. 2020. uRl:
https://www.microsoft.com/en-gb/microsoft-365/microsoft-
teams/group-chat-software.

[47] Jean-Michel Muller et al. ‘The Fused Multiply-Add Instruction’. In: Handbook
of Floating-Point Arithmetic. Birkhäuser Boston, 2010, pp. 151–179. doi:
10.1007/978-0-8176-4705-6{_}5. uRl: https:
//link.springer.com/chapter/10.1007/978-0-8176-4705-6_5.

[48] NASA. Definition of Streamlines. uRl:
https://www.grc.nasa.gov/WWW/k-12/airplane/stream.html.

[49] Tianyun Ni. ‘Direct Compute - Bring GPU Compute to the Mainstream’. 2009.

36

179

[50] B. D. Nichols and C.W. Hirt. ‘Methods for Calculating Multi-Dimensional,
Transient, Free Surface Flows Past Bodies’. In: First International Conference on
Numerical Ship Hydrodynamics (20th–22nd October 1975). Ed. by
Joanna W. Schot and Nils Salvesen. David W. Taylor Naval Ship Research and
Development Center, 1975, pp. 253–278.

[51] Kyle E Niemeyer and Chih-Jen Sung. ‘Recent Progress and Challenges in
Exploiting Graphics Processors in Computational Fluid Dynamics’. In: J.
Supercomput. 67.2 (February 2014), pp. 528–564. issn: 0920-8542. doi:
10.1007/s11227-013-1015-7. uRl:
https://doi.org/10.1007/s11227-013-1015-7.

[52] NVIDIA. CUDA Zone | NVIDIA Developer. 2020. uRl:
https://developer.nvidia.com/cuda-zone.

[53] NVIDIA. ‘External Resource Interoperability’. In: CUDA Toolkit
Documentation. Vol. 11. uRl: https://docs.nvidia.com/cuda/cuda-
runtime-api/group__CUDART__EXTRES__INTEROP.html.

[54] NVIDIA. ‘Global Memory - CUDA C++ Programming Guide’. In: v11.1.1 ().
uRl: https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#global-memory-3-0.

[55] NVIDIA. How to Access Global Memory Efficiently in CUDA C/C++ Kernels |
NVIDIA Developer Blog. uRl: https://developer.nvidia.com/blog/how-
access-global-memory-efficiently-cuda-c-kernels/.

[56] NVIDIA. NVIDIA CUDA Programming Guide. 2007.
[57] OpenMP. Home - OpenMP. uRl: https://www.openmp.org/.
[58] M Perić, R Kessler and G Scheuerer. ‘Comparison of finite-volume numerical

methods with staggered and colocated grids’. In: Computers & Fluids 16.4
(1988), pp. 389–403.

[59] Craig W. Reynolds. ‘Flocks, herds, and schools: A distributed behavioral
model’. In: Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 1987. New York, New York, USA:
Association for Computing Machinery, Inc, August 1987, pp. 25–34. isbn:
0897912276. doi: 10.1145/37401.37406. uRl:
http://portal.acm.org/citation.cfm?doid=37401.37406.

[60] Graham Sellers et al. ARB_compute_shader. uRl: https://www.khronos.
org/registry/OpenGL/extensions/ARB/ARB_compute_shader.txt.

[61] Peter Sikachev. ‘Real-Time Fluid Simulation in Shadow of the Tomb Raider’.
2018.

[62] Simple DirectMedia Layer - Homepage. uRl: https://www.libsdl.org/.
[63] Jos Stam. ‘Stable Fluids’. In: Proceedings of the 26th Annual Conference on

Computer Graphics and Interactive Techniques. SIGGRAPH ’99. USA: ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 121–128. isbn: 0201485605.
doi: 10.1145/311535.311548. uRl:
https://doi.org/10.1145/311535.311548.

[64] S. Stark. ‘CS257 Report - Reducing the Execution Time of a Fluid Simulation
Program’. In: (2020).

37

180

[65] Andrew L. Sullivan. ‘Wildland surface fire spread modelling, 1990 - 2007. 1:
Physical and quasi-physical models’. In: International Journal of Wildland Fire
18.4 (2009), p. 349. issn: 1049-8001. doi: 10.1071/wf06143. uRl:
http://dx.doi.org/10.1071/WF06143.

[66] The Khronos Group. OpenCL Overview - The Khronos Group Inc. uRl:
https://www.khronos.org/opencl/.

[67] The Khronos Group.The Khronos Group Releases OpenCL 1.0 Specification.
2008. uRl: https://www.khronos.org/news/press/the_khronos_
group_releases_opencl_1.0_specification.

[68] Murilo F. Tome and Sean McKee. ‘GENSMAC: A Computational Marker and
Cell Method for Free Surface Flows in General Domains’. In: Journal of
Computational Physics 110.1 (1994), pp. 171–186. issn: 0021-9991. doi:
https://doi.org/10.1006/jcph.1994.1013. uRl: http://www.
sciencedirect.com/science/article/pii/S0021999184710138.

[69] Trello. 2020. uRl: https://trello.com/.
[70] University of Warwick. Ethical Consent. uRl:

https://warwick.ac.uk/fac/sci/dcs/teaching/ethics.
[71] Tom Vajzovic. Gopt - Free command line option and argument parsing C

library. uRl: http://www.purposeful.co.uk/software/gopt/.
[72] Vulkan Overview. 2020. uRl: https://www.khronos.org/vulkan/.
[73] David M. Young. Iterative Solution of Large Linear Systems. 1971.

38

181

Appendix A Future Plans
Throughout this paper multiple possible extensions were discussed. This does not
cover possible optimizations, but instead non-essential updates to the program or sur-
rounding content that could provide benefit. They are collected here.

Extension Referenced In
Alternate Boundary Values for Pressure Section 2.2.2
Re-adding the Residual Phase Footnote 5
Updating the Simulation State File Format Section 5.3
Parallel Simulation & Rendering Section 5.5.1
Unit Tests for makeinput, compare Section 8.1
Tests for Different Visualization Scenarios Section 8.2

Table A.1: Possible Extensions

39

182

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Project Aims
	Stakeholders

	Research
	An Example Simulation Tick
	The Simulation Variables
	Overall Simulation Structure
	Timestep Calculation
	Tentative Velocity
	Solving the Poisson Equation with SOR
	Final Velocity Calculations

	Optimization
	Background
	Previous Work
	New Optimizations
	Conclusion

	Visualization
	Background
	Previous Work
	Current State-of-the-Art
	Stagnation & Composition
	Realtime Particle Simulation Techniques
	Conclusions

	Ethical, Social, and Legal Issues
	Project Requirements
	Functional Requirements
	Non-Functional Requirements
	Hardware and Software Constraints

	Design
	Code Structure
	Simulation & Memory Layer
	CUDA Design
	N-Buffering

	Visualization Layer
	Components
	Timing Breakdown
	Visualization Work Breakdown

	Command-Line Layer & Program Usage
	Generating Inputs
	File Formats
	Comparison Heuristics

	Implementation
	Preliminary Work & Background
	C++ Primer
	Build System
	Library Selection

	Code Safety
	Smart Resource Classes

	Memory Layer
	Array Handles
	FrameAllocator
	FrameSetAllocator
	Usage in Other Layers

	Simulation Layer
	Runners
	Backends
	Usage in Other Layers

	Visualization Layer
	Multithreading
	GPU Work Breakdown
	Safe CPU/GPU Communication
	Usage in Other Layers

	Command-Line Layer

	Project Management
	Software Development Methodology
	Project Timeline
	Tools
	Risk Management
	Misscheduling
	Other Pressures
	Loss of Hardware Access
	Illness

	Testing & Success Measurement
	Unit Tests
	Integration Testing
	System Testing
	Success Measurement

	Results
	Simulation
	Speed
	Accuracy
	GPU Utilization
	Memory Leaks

	Visualization
	Speed
	GPU Utilization
	Memory Leaks

	Evaluation
	Requirements Evaluation
	Project Management

	Conclusion
	Summary
	Reflection
	Future Work

	Bibliography
	Smart Resource Classes
	Previous Project Reports
	Presentation
	Progress Report

