
Optimized Visualization of
Fluid Simulations

Samuel Stark - u1800081 - 10th March 2020



Disclaimer

• The scope of this project is huge!

• 8,500 lines of code over 146 files (not
including comments, blank space, libraries)

• I can’t talk about everything interesting in 15
minutes.

• This is going to be a whistle-stop tour of the
best bits.

• Ask me anything after the presentation and I
can talk your ear off.

Timestep calculations Agnostic sim runners

CUDA Unified Memory Origin-aware pointers

Parallel Reductions CUDA Graphs

const __restrict__ Frame allocation

Image Layout Transfers Vulkan Memory Model

CUDA Warps Push Constants

Specialization Constants Indirect Dispatch/Draw

Indexed Rendering Semaphores

Fences Vulkan Memory Allocation

Memory Alignment Atomic Variables

and more!

Table 1: Interesting things I could talk
about

1/42



CFD, Simulations, and High-Speeds

• Equations modelling real-world phenomena have been around for centuries.

• Computational Fluid Dynamics programs (CFD) solve the Navier-Stokes equations to
simulate fluid flow.

• Used in many fields:
• Aerodynamics [Jameson et al. 2002]

• Fire Spread Modelling [Sullivan 2009]

• Entertainment Industry [‘Fluid Dynamics on the Big Screen’ 2008; Medvecký-Heretik Jakub
2018]

• Generally interactive speeds and precise simulation not pursued together.

2/42



Project Motivation

• CS257 coursework presented a fluid simulation from [Griebel et al. 1998], tasked
students with optimizing it for a 6-core CPU.

• My solution [Stark 2020] ran 64x faster than the original, and 7.9x faster than real-time,
on the given input data.

• But the simulation was still limited:
• We were prevented from running it on a GPU for greater speedups.

• Results could only be visualized after the fact, even though it was fast enough to
render in real time.

3/42



Project Goals/Achievements

Port the simulation to the GPU.

Exploit the speedup to improve accuracy and increase sim resolution.

Intuitively visualize the simulation in real time.1

All goals were achieved!

1Use games industry techniques for efficient rendering.
4/42



Table of Contents

1. Intro

2. Simulation
Overview
Optimizations

3. Visualization

4. Evaluation

5. Project Management

6. Conclusion & Future Work

5/42



Simulation Overview

• Simulation code preserved from CS257
submission.

• Simulates “laminar flows of viscous,
incompressible fluids”.

• Fluid is represented by a 2D array of cells.

• Fluid flows around static ‘obstacle’ cells.

• Generates values for velocity (u, v) and relative
pressure p.

Figure 1: Laminar vs. turbulent fluid
flow. Reproduced from

cfdsupport.com

6/42



Simulation Structure

• Simulation runs in ‘ticks’, each representing a
discrete timestep δt.

• Each ‘tick’ has multiple sequential execution
stages.

• Each stage has been optimized to be
embarassingly parallel.

• Poisson Solver runs for a constant amount of
iterations each tick.

Compute δt

Compute Tentative Velocity

Compute Poisson RHS

Poisson Solver

Update Velocity

Boundary Conditions

N iterations

Figure 2: An example simulation tick

7/42



Simulation Kernels
• This maps incredibly well to CUDA ‘kernels’2.

• Each stage is implemented as one or more kernels, run over every element in parallel.

// Computing delta-t is done slightly differently (ask me about it at the end!)

__global__ void computeTentativeVelocity_apply(...);
__global__ void computeTentativeVelocity_postproc_vertical(...);
__global__ void computeTentativeVelocity_postproc_horizontal(...);

__global__ void computeRHS_1per(...);

__global__ void poisson_single_tick(...);

__global__ void updateVelocity_1per(...);

__global__ void boundaryConditions_preproc_vertical(...);
__global__ void boundaryConditions_preproc_horizontal(...);
__global__ void boundaryConditions_apply(...);
__global__ void boundaryConditions_inputflow_west_vertical(...);

2https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#kernels
8/42

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#kernels


CUDA Unified Memory

• CUDA provides Unified Memory
allocations3

• Paged between the Host and Device
on-demand.

• Same performance as normal GPU
memory when present on the device.

• Used to mix CPU and GPU
implementations while testing and
debugging.

3https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
9/42

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/


const __restrict__ pointers

• CUDA exposes a fast “read-only data
cache”4.

• To ensure the compiler knows memory is
read only, use the const and
__restrict__ qualifiers on all pointers.

• Shown to speed up execution times in
[Diarra 2018].

template<typename T>
using in_matrix =

const T* const __restrict__;

template<typename T>
using out_matrix =

T* const __restrict__;

Figure 3: Helper templates used in
kernel definitions

Ask me about const __restrict__ pointers at the end!

4https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-memory-3-0
10/42

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-memory-3-0


Parallel Reductions

• Computing δt requires the maximum values of u, v.

• We can do this in parallel on the GPU!

• Find the values on the GPU, then copy them to the
CPU to calculate δt.

• Implementation taken from [Harris n.d.].

Figure 4: Example of parallel
reduction for sum.

Reproduced from eximiaco.tech

11/42

https://www.eximiaco.tech/en/2019/06/10/implementing-parallel-reduction-in-cuda/


CUDA Graphs
• CPU overhead when launching Poisson kernels caused large GPU bubbles.

• Instead of launching N times, record a CUDA Graph5 that runs N iterations, and launch it
once.

• Theoretical 2x speedup.

for (int i = 0; i < 100; i++) {
launch poisson on stream;

}

Individual Launches

(record poisson100Iters if not present)

cudaGraphLaunch(poisson100Iters, stream);

With CUDA Graphs
5https://developer.nvidia.com/blog/cuda-graphs/

12/42

https://developer.nvidia.com/blog/cuda-graphs/


Table of Contents

1. Intro

2. Simulation

3. Visualization
Research
Design
Implementation

4. Evaluation

5. Project Management

6. Conclusion & Future Work

13/42



Visualization Research I

• This program is an example of ‘tightly-coupled in-situ visualization’ [Kress 2017].

• Academia hasn’t recently innovated in fluid visualization, only in methods for running
faster such as [Shyh-Kuang Ueng et al. 1996].

• This was noted in [Gaither 2004], which states ‘feature detection’ would be a key element
going forward rather than new visualization methods.

14/42



Visualization Research II

• Industry seems to match this
assessment.

• Tools such as Autodesk CFD, Tecplot,
ParaView all visualize data with the same
general methods...

• but they allow the data to be filtered to
extract relevant values.

• Methods can be combined to show a
range of information.

Figure 5: Weather Forecast showing wind
speed, weather fronts, and cloud cover.6

6https://youtu.be/y_1--MkiNjQ, Met Office 10 Day Trend for March 3rd.
15/42

https://youtu.be/y_1--MkiNjQ


Visualization Research
What can Autodesk CFD do?

Result Planes - Scalar

• Place a plane in 3D space

• Select a scalar quantity (pressure,
temperature etc.)

• The cross-section of the model shows the
selected quantity, with a color scale

16/42



Visualization Research
What can Autodesk CFD do?

Result Planes - Vector

• Place a plane in 3D space

• Select a vector quantity (velocity etc.)

• The cross-section of the model shows a
vector field of the selected velocity.

17/42



Visualization Research
What can Autodesk CFD do?

Isosurfaces

• Select a scalar quantity X.

• Select a value X = x.

• This surface is displayed with a color
based on another quantity Y.

• A vector quantity can also be added to the
surface.

18/42



Visualization Research
What can Autodesk CFD do?

Isovolumes

• Select a scalar quantity X.

• Select a range xmin ≤ X ≤ xmax.

• This volume is displayed with a color
based on another quantity Y.

• A vector quantity can also be added to the
volume.

19/42



Visualization Research
What can Autodesk CFD do?

Particles

• Place particle spawn points (‘seeds’).

• Select a scalar quantity to display, or a
solid color.

• Points along the particle paths show the
specified quantity.

• Can choose many kinds of path:
• Cylinders
• Ribbons
• Comets
• etc.

20/42



Selected Features
Separate the visualization into layers:

• Background

• Scalar Quantity
• Display a quantity X using a colormap when xmin ≤ X ≤ xmax
• Allow the user to select a range, or calculate a range containing all values
• Equivalent to Results Plane (Scalar) + 2D Isovolume

• Vector Quantity
• Display a vector field of X when xmin ≤ X ≤ xmax
• Allow the user to select a range, or calculate a range containing all values
• Equivalent to Results Plane (Vector) + 2D Isovolume

• Particles
• Editable ‘seeds’
• Planned for particle trace options, didn’t have time.

21/42



Anatomy of a Frame

GPU

CPU 0

CPU 1

Viz
N-1

Simulation
N

Viz Compute
N

Viz Graphics
N

Sim
N+1

Launch Sim Kernels

Record Visualization

• CPU 0 launches the simulation, which requires some CPU/GPU sync at the start.

• CPU 1 enqueues the visualization work to start right after the simulation.

• Sim and Visualization share memory, architecture is zero-copy.

• Maintains near-100% GPU Utilization.
22/42



GPU Synchronization

GPU - CUDA

GPU - Vulkan Viz Comp
N-1

Viz Graphics
N-1

Simulation
N

Viz Compute
N

Viz Graphics
N

Sim
N+1

• Synchronization between overall workloads is performed via semaphores7.

• One workload waits on a semaphore until another workload signals it.

• Compute workloads cannot overlap on my graphics card8

• Simulation and Viz Graphics could overlap, but don’t in practice.
7https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkSemaphore.html
8Running parallel compute workloads was introduced in [NVIDIA AMPERE GA102 GPU ARCHITECTURE 2020]

23/42

https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkSemaphore.html


GPU Synchronization - Less Misleading

GPU - CUDA

GPU - Vulkan Viz Comp
N-1

Viz Graphics
N-1

Simulation
N

Viz Compute
N

Viz Graphics
N

Sim
N+1

• Synchronization between overall workloads is performed via semaphores9.

• One workload waits on a semaphore until another workload signals it.

• Compute workloads cannot overlap on my graphics card10

• Simulation and Viz Graphics could overlap, but don’t in practice.
9https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkSemaphore.html

10Running parallel compute workloads was introduced in [NVIDIA AMPERE GA102 GPU ARCHITECTURE 2020]
24/42

https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkSemaphore.html


Extracting Simulation Data

• First part of Viz Compute.

• Transfer + interpolate data from 1D
arrays to a 2D texture.

• More complex than a simple copy.

• Allows arbitrary sampling, using built-in
texture filtering for free interpolation.

float u[], v[], p[], isfluid[];

int idx = i * pConsts.height + j;
vec2 velocity = vec2(u[idx], v[idx]);

uniform sampler2D simDataSampler;
// = (u, v, p, isfluid);

// 50% across, 20% up the image
vec2 sampleAt = (0.5, 0.2);
vec2 velocity =

texture(simDataSampler, sampleAt).xy;

Ask me about Simulation Data Textures at the end!

25/42



Per-Layer Viz Work
Scalar Quantity

Vector Quantity

Particles

Extract Quantity Find min/max
(Optional)

Extract Quantity Find min/max
(Optional)

Create Vector
Instances

Decide Particles
to emit

Emit new
Particles

Simulate
Particles

Draw
Background
w/ Quantity

Draw
Vector Instances

Draw
Particles

Compute Graphics

• Compute Pipelines use one Compute Shader, roughly equivalent to CUDA Kernels.

• Graphics Pipelines use a Vertex Shader and a Fragment Shader to draw to a render target.

• There is also a ‘final composite’ stage which renders the GUI with the viz output.
26/42



Viz Compute Order

Extract Sim
Data Texture

Extract Scalar
Quantity

Find Scalar
min/max

Extract
Vector
Quantity

Find Vector
min/max

Create Vector
Instances

Scalar Quantity Vector Quantity

Viz Compute

• Computer work for layers is done serially, not in parallel (which could be improved in the
future).

• Vulkan uses Execution and Memory Barriers to ensure ordering. (Ask me about this at
the end!)

• Vectors and Particles are drawn with Indirect Instanced rendering.
27/42



Indirect Instanced Rendering

GPU
Draw 8
particles

Positions of
8 particles

Simulate
??? particles

Draw N
particles

N = 24
Positions of 24+ particles

read write read

Instanced Rendering Indirect Instanced Rendering

• We don’t know how many Vectors/Particles exist at record time.

• Tell the GPU to look somewhere in memory to find how many copies to render.

Ask me about indirect/instanced/indexed rendering at the end!

28/42



Result!

29/42



Table of Contents

1. Intro

2. Simulation

3. Visualization

4. Evaluation

5. Project Management

6. Conclusion & Future Work

30/42



GPU Utilization

• GPU Utilization is close to 100% where possible.

• At tick boundaries some bubbles appear as the CPU calculates the next δt.

• When visualizing, the Vulkan work hides this.

Tick Boundary
Overall Visualization Pipeline

31/42



Speed

• Simulates the original CS257 input 2.47-2.86x faster than the original code.

• Visualization takes 1.35ms per frame (740 FPS) at highest iteration count N = 1000

• Individual visualization features are quick, and combined take less time than the
simulation.11

Base Frame with Sim Scalar Quantity Vector Field Particles

Mean Time (ms) 0.30 1.18 0.39 0.46 0.42

△ from base (ms) - +0.88 +0.09 +0.16 +0.12

11All points measured here in worst-case: with auto-range on where possible, and with maximum particles onscreen.
32/42



Difference vs. Original
• The program contains a comparison tool for checking similarity.

• Simulating the original CS257 test has a mean square error of 10−14 for velocities, and
10−9 for pressure.

• As iteration count and simulation time increases, the error becomes larger.

• Multiple potential causes in algorithm and implementation, but haven’t researched
further.

N 100 200 300 1000

Velocity MSE (u,v) 10−14 10−14 10−14 10−14

Pressure MSE (p) 10−9 10−8 10−7 10−6

Mean Square Error for original CS257 input data, simulated for 10 s

33/42



Table of Contents

1. Intro

2. Simulation

3. Visualization

4. Evaluation

5. Project Management

6. Conclusion & Future Work

34/42



Project Management
• Schedule defined as part of the Specification, planned for coding and writing reports.

• Code Freeze on Week 22 was very helpful

• Gave me enough time to finish the presentation!

University Week

Specification

CFD Research

Initial Simulation Porting

Basic Visualization

Progress Report

Visualization Research

Visualization Development

Simulation Optimization

Presentation

1 3 5 7 9 11 13 15 17 19 21 23

Code Freeze

Christmas
break
and
other
work

35/42



Table of Contents

1. Intro

2. Simulation

3. Visualization

4. Evaluation

5. Project Management

6. Conclusion & Future Work

36/42



Conclusion

• Overall, the project was a success.

• CUDA is a very intuitive API, especially for those without prior compute experience.

• Vulkan requires more heavy lifting, but it seems to have been worth it.

• Looking to the games industry for advice in i.e. particle rendering is helpful.

• For the scientific community to start using Vulkan, simple abstraction layers will be
needed.

• VTK, a popular visualization library, has a Vulkan branch that seems to be dead.

• Datoviz is a new library with Python bindings that renders with Vulkan.

• CUDA-Vulkan interoperability is nice! Resources should be allocated from Vulkan to
maintain full control.

37/42



Future Work

Simulation
• Investigate simulation accuracy and algorithm.

• Re-introduce the Poisson accuracy check.

• Optimize parallel reductions.

Visualization
• Investigate colorblindness options.

• Better memory allocation, potentially using a helper library.

• Run different layer computations in parallel with separate command buffers?

38/42



Demo + Questions



References I

‘Fluid Dynamics on the Big Screen’. In: ANSYS Advantage II.2 (2008), pp. 52–53.
URL: https://www.ansys.com/-
/media/ansys/corporate/resourcelibrary/article/aa-v2-i2-fluid-
dynamics-on-big-screen.pdf.

NVIDIA AMPERE GA102 GPU ARCHITECTURE. Tech. rep. 2020. URL:
https://www.nvidia.com/content/dam/en-
zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-
Whitepaper-V1.pdf (visited on 22/02/2021).

Rokiatou Diarra. ‘Towards Automatic Restrictification of CUDA Kernel Arguments’.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ASE 2018. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 928–931. ISBN: 9781450359375. DOI:
10.1145/3238147.3241533. URL: https://doi.org/10.1145/3238147.3241533.

39/42

https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/aa-v2-i2-fluid-dynamics-on-big-screen.pdf
https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/aa-v2-i2-fluid-dynamics-on-big-screen.pdf
https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/aa-v2-i2-fluid-dynamics-on-big-screen.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://doi.org/10.1145/3238147.3241533
https://doi.org/10.1145/3238147.3241533


References II

K. Gaither. ‘Visualization’s role in analyzing computational fluid dynamics data’. In:
IEEE Computer Graphics and Applications 24.3 (2004), pp. 13–15. DOI:
10.1109/MCG.2004.1297005.

Michael Griebel, Thomas Dornseifer and Tilman Neunhoeffer. Numerical simulation
in fluid dynamics: a practical introduction. SIAM, 1998.

Mark Harris. Optimizing Parallel Reduction in CUDA. Tech. rep. URL:
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf.

Antony Jameson, Luigi Martinelli and J Vassberg. ‘Using computational fluid
dynamics for aerodynamics–a critical assessment’. In: Proceedings of ICAS. 2002,
pp. 2002–1.

James Kress. In Situ Visualization Techniques for High Performance Computing.
2017. URL: www.cs.uoregon.edu/Reports/AREA-201703-Kress.pdf (visited on
06/03/2021).

40/42

https://doi.org/10.1109/MCG.2004.1297005
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
www.cs.uoregon.edu/Reports/AREA-201703-Kress.pdf


References III

Medvecký-Heretik Jakub. ‘Real-time Water Simulation in Game Environment’.
PhD thesis. Masaryk University, Faculty of Informatics, 2018.

Shyh-Kuang Ueng, C. Sikorski and Kwan-Liu Ma. ‘Efficient streamline, streamribbon,
and streamtube constructions on unstructured grids’. In: IEEE Transactions on
Visualization and Computer Graphics 2.2 (1996), pp. 100–110. DOI:
10.1109/2945.506222.

S. Stark. ‘CS257 Report - Reducing the Execution Time of a Fluid Simulation
Program’. In: (2020).

Andrew L. Sullivan. ‘Wildland surface fire spread modelling, 1990 - 2007. 1:
Physical and quasi-physical models’. In: International Journal of Wildland Fire 18.4
(2009), p. 349. ISSN: 1049-8001. DOI: 10.1071/wf06143. URL:
http://dx.doi.org/10.1071/WF06143.

41/42

https://doi.org/10.1109/2945.506222
https://doi.org/10.1071/wf06143
http://dx.doi.org/10.1071/WF06143


Simulation Data Texture
• Simulation stores data points from a staggered grid.

• Visualization wants to get data at arbitrary locations, which texture hardware is really
good at.

• Convert the original data to a texture 2x the resolution, and interpolate when values aren’t
present.

pi,j pi+1,j

ui−1,j ui,j ui+1,j

vi,j vi+1,j

vi,j−1 vi+1,j−1

pi,j pi+1,j

ui−1,j ui,j ui+1,j

vi,j vi+1,j

vi,j−1 vi+1,j−1

42/42


	Intro
	Simulation
	Overview
	Optimizations

	Visualization
	Research
	Design
	Implementation

	Evaluation
	Project Management
	Conclusion & Future Work
	References
	Extras

